Триггер шмитта на транзисторах

Триггер на логических элементах

Собсна гря про триггеры (в том числе и триггеры на транзисторах) уже вкратце было рассказано в отдельной статье, здесь-же немного по-подробнее и о том как сделать триггер из «подручных» базовых элементов.

Итак:

Триггер — это устройство, обладающее двумя состояниями устойчивого равновесия. Триггер еще можно назвать устройством с обратными связями. На рисунке изображена схема триггера на логических элементах ИЛИ-НЕ.

Такая схема называется асинхронным RS-триггером. Первый (сверху) выход называется прямым, второй — инверсным. Если на оба входа (R и S) подать лог. нули, то состояние выходов определить невозможно. Триггер установится как ему заблагорассудится, т. е. в произвольное состояние. Допустим, на выходе Q присутствует лог. 1, тогда на выходе не Q (Q с инверсией) обязательно будет лог. 0. И наоборот. Чтобы установить триггер в нулевое состояние (когда на прямом выходе лог. 0, на инверсном — лог. 1) достаточно на вход R подать напряжение высокого уровня. Если высокий уровень подать на вход S, то это переведет его в состояние 1, или как говорят, в единичное состояние (на прямом выходе лог. 1, на инверсном — лог. 0). И в том, и в другом случаях напряжение соответствующего уровня может быть очень коротким импульсом — на грани физического быстродействия микросхемы. То есть, триггер обладает двумя устойчивыми состояниями, причем эти состояния зависят от ранее воздействующих сигналов, что позволяет сделать следующий вывод -триггер является простейшим элементом памяти. Буквы R и S по-буржуйски set — установка, reset — сброс (предустановка). На рис. 2 RS-триггер показан в «микросхемном исполнении».

RS-триггер можно соорудить и на элементах И-НЕ, как показано на рисунке 3. Такая конструкция встречается тоже довольно часто:

Принцип работы такой же, как у триггера на элементах ИЛИ-НЕ, за исключением инверсии управляющих сигналов, т. е. установка и сброс триггера производится не лог. 1, а лог. 0. Другими словами, входы такого триггера инверсные. В описанных триггерах изменение состояния происходит сразу после изменения состояния на входах R и S. Поэтому такие триггеры называются асинхронными.

Если схему асинхронного триггера немного дополнить, то получим вот такое:

В таком триггере вводится дополнительный вход С, называемый тактовым или синхронизирующим. Изменение состояний триггера происходит при подаче сигналов лог. 1 на входы R и S и последующим воздействием на вход С тактового (синхронизирующего) импульса. Если на тактовый вход импульс не воздействует, то состояние триггера не изменится. Другими словами, изменение состояния триггера происходит под действием синхроимпульса, поэтому такие триггеры называются синхронными.

Основная схема генерирования линейно-нарастающего напряжения

Для понимания того как происходит формирование линейно-нарастающего напряжения вспомним как протекает переходный процесс в интегрирующих RC-цепях. Для этого изобразим схему заряда конденсатора некоторым током I



График заряда конденсатора.

Заряд Q конденсатора постоянным током I происходит за время t

В тоже время напряжение UС на конденсаторе емкостью С определяется величиной заряда Q накопленного в конденсаторе

Таким образом, напряжение UС на конденсаторе емкостью С, который заряжается током I будет определяться временем t

Так как значение емкости и тока постоянны, то напряжение, до которого зарядится конденсатор пропорционально времени, прошедшего с момента замыкания ключа. Таким образом, напряжение на конденсаторе UС фактически является суммой напряжений за весь период t. Такое суммирование называется интегрированием, а схема, которая выполняет такую операцию, называется интегратором.

Интегратор на ОУ я рассматривал в одной из предыдущих статей и показан на рисунке ниже



Схема интегратора на операционном усилителе.

В данной схеме зарядный ток I конденсатора С1 определяется входным напряжением UBX и резистором R1, тогда выходное напряжение будет вычисляться по следующей формуле

Знак «–» в выражении показывает то, что входной сигнал поступает на инвертирующий вход ОУ.

Описанный здесь интегратор, имеющий на выходе линейно-изменяющуюся форму напряжения, является основой для построения генераторов треугольного и пилообразного напряжений.

Устройство и принцип работы симметричного триггера

Симметричный триггер представляет собой двухкаскадный усилитель постоянного тока с положительной обратной связью, которая осуществляется через RC–цепи с коллектора одного транзистора на базу другого.



Схема симметричного триггера с независимым смещением.

Данная схема триггера имеет название симметричного триггера с независимым смещением. В данной схеме параметры левой и правой части идентичны, то есть Rb1 = Rb2, Rk1 = Rk2, R1 = R2, C1 = C2, транзисторы VT1 и VT2 имеют одинаковые параметры.

Хотя триггер и называется симметричным, в реальных схемах никогда не удаётся допиться идентичности параметров транзистора, поэтому при подключении триггера к источнику питания один из его транзисторов окажется открытым (состояние насыщения), а другой транзистор будет в закрытом состоянии (состояние отсечки). В данном состоянии триггер может находиться сколько угодно долго (пока присутствует напряжение питания).

Допустим, что после подключения триггера к источнику питания транзистор VT1 оказался в открытом состоянии, а транзистор VT2 – в закрытом состоянии. В этом случае коллекторное напряжение транзистора VT1 окажется примерно равным 0, а коллекторное напряжение VT2 – напряжению источника питания + Е. Казалось бы, за счёт резистора R1 транзистор VT2 должен был бы открыться, но так как на базу VT2 поступает дополнительное напряжение смещения Eb, поэтому на базе VT2 поддерживается напряжение меньшее, чем необходимо для открытия данного транзистора. Таким образом за счёт дополнительного источника смещения Eb схема триггера находится в устойчивом состоянии, а на выходах триггера поддерживаются парафазные напряжения.

Для того чтобы на выходах симметричного триггера изменились напряжения необходимо подать на триггер внешний управляющий (запускающий) импульс напряжения или тока. В этом случае триггер переходит из одного устойчивого состояния в другое, транзисторы в схеме изменяют своё состояние: открытый транзистор – закрывается, а закрытый – открывается. В это же время на выходах триггера формируется перепад напряжения.

Регистры на триггерах

Так как один переключатель является однобитовой ячейкой памяти, то, чтобы сохранить несколько бит, нужно увеличить количество единичных хранилищ. Цепочка из таких ячеек носит названия регистра. Регистр позволяет временно хранить цифровые данные двоичных разрядов. Количество разрядов зависит от количества однобитовых ячеек.


Схема 4-х разрядного регистра сдвига на триггерах

Использование элементарных электронных цифровых устройств – триггеров, позволяет составлять сложные схемы управления логическими устройствами. Одна элементарная защёлка памяти своим бистабильным состоянием помогает осуществлять самые сложные схемные решения.

Варианты реализации триггера

Прецизионный триггер Шмитта

Триггер Шмитта представляет собой , управляемый одним входным аналоговым сигналом, с двумя разными напряжениями переключения в два различных состояния. Прецизионным его называют потому, что пороги переключения задаются независимо и точность этих порогов зависит только от точности порогов переключения входных одновходовых компараторов. Обычно состояния выходного сигнала триггера обозначаются символами «0» и «1», причём, напряжение переключения в «1» выше напряжения переключения в «0». При входном напряжении находящемся между напряжениями переключения триггер Шмитта находится в состоянии хранения ранее записанной в него информации и его выходной сигнал определяется предысторией изменения входного сигнала.

Триггеры Шмитта с RS-триггером не имеет обратной связи с выхода на аналоговый вход. Они состоят из двухпорогового компаратора, в котором сравниваются два раздельно устанавливаемых напряжения порогов переключения с входным сигналом. Переключение триггера в состояние «0» и в состояние «1» происходит от выходных сигналов однопороговых компараторов, которые подаются на асинхронные входы установки и сброса S и R RS-триггера.

Триггер Шмитта с обратной связью


Триггер Шмитта на компараторе с обратной связью.A{\displaystyle A} — однопороговый компаратор с ограниченными на уровне U+, U−{\displaystyle U_{+},\ U_{-}} выходными напряжениями в двух разных состояниях;B{\displaystyle B} — делитель напряжения в петле положительной обратной связи.

В вариантах триггера с обратной связью, обратная связь используется и для переключения напряжения порога сравнения в обычном компараторе, превращая его одновременно в двухпороговый компаратор с разными порогами и в RS-триггер на одном и том же однопороговом компараторе. При высоком напряжении U+{\displaystyle U_{+}} (состояние «1») на выходе компаратора, обратная связь снижает напряжение порога переключения по входу Input, так как суммируется с входным сумматором с входным сигналом, при низком напряжении U−{\displaystyle U_{-}} (состояние «0») на выходе компаратора обратная связь увеличивает напряжение порога переключения.

В такой структуре затруднены раздельная и независимая установка порогов срабатывания. Кроме того, при входном напряжении, значение которого лежит между порогами переключения, то есть в зоне неоднозначности, принудительная установка триггера в заданное состояние требует применения дополнительных компонентов.

Типы триггеров

В следующих разделах представлены принципы функционирования стандартных устройств. Они могут работать автономно либо в различных комбинациях. Сочетания триггеров в электронике применяют для построения сложных логических схем.

Что такое trigger RS типа

Эти элементы делят на группы по способам управления. Для удобства здесь и далее пояснения сделаны с помощью логических компонентов. При необходимости можно собрать аналогичный триггер на реле или транзисторах.

RS-триггер асинхронный

Работоспособную схему можно собрать из двух типовых элементов «И-НЕ».


Схемотехника, таблица состояний, графики сигналов

RS-триггер синхронный

В этой схеме при подаче «1» на С устройство обеспечивает режим «прозрачности». Изменения на входах R и S с минимальной внутренней задержкой отображаются в промежуточных точках /R и /S. После установки управляющего сигнала «0» включается хранение данных.


Переключение состояний происходит только при наличии управляющего (тактового) сигнала

D-триггер синхронный

На графиках работы видно, что изменение выходного сигнала происходит только при наличии «1» на входе С. Данные сохраняются в неизменном состоянии до поступления следующего импульса синхронизации. В этом цикле обеспечивается беспрепятственная проводимость данных.


Эти устройства имеют отдельный вход для информационных сигналов

D-триггер двухступенчатый

Как и в предыдущем примере, здесь используется один канал поступления данных – D. На схеме показано, как создано более сложное устройство из двух одноступенчатых блоков.


Двухступенчатая «защелка» с управлением синхроимпульсом

T-триггер синхронный

Такие устройства подходят для двукратного уменьшения частоты. На картинке показаны счетчики, собранные на базе триггеров RS и D типа.


Один выходной сигнал формируется на каждые два синхроимпульса

JK-триггер

Рабочие циклы этого устройства аналогичны рассмотренному выше триггеру типа RS. Главное отличие – изменение выходного сигнала на противоположное значение (инверсия) выходного сигнала после подачи «1» на K и J одновременно. Следует подчеркнуть отсутствие запрещенных комбинаций в информационных каналах.


Схема, собранная на элементах «И-НЕ»

RS-триггер на логических элементах

Простейший способ его сделать – соединить вместе пару двухвходовых логических элементов И-НЕ. При этом обратная связь с выхода одного элемента подается на вход другого (см. схему ниже).

Как правило, в данной схеме входные сигналы показывают инверсными (с верхним подчеркиванием), хотя в дальнейшем при анализе работы используют обозначения прямых (неинвертированных) входов. Это сильно затрудняет понимание логики работы триггера. Поэтому мы не будем вводить инвертирование входов на этапе рассмотрения работы схемы на элементах И-НЕ, а учтем это в дальнейшем при ее модификации.

Сколько входов и выходов имеет RS-триггер? Из схемы выше видно, что он содержит S-вход и R-вход, которые служат, соответственно, для установки и сброса схемы, а также прямой Q и инверсный Q̃ выходы. Но данный простейший триггер относится к виду асинхронных, его условное обозначение показано ниже.

В синхронном устройстве имеется еще и вход C для тактовых импульсов.

Классификация последовательных схем

Последовательные схемы допускается классифицировать по следующим показателям:

  • одноступенчатые защёлки, в которых содержатся элемент памяти и устройство управления, их маркируют буквой Т;
  • двухступенчатые ячейки: статического и динамического управления, используются для защиты от гонок сигналов, обозначаются буквами ТТ;
  • переключатели, имеющие сложную логику: одно,- и двухступенчатые соты.

Одноступенчатые ячейки применяются в качестве первых ступеней в переключателях ТТ с динамической схемой управления, имеют такое же управление. При самостоятельном использовании управление в большинстве своём статическое.

Двухступенчатые устройства имеют как статическое, так и динамическое управление.

Состояние «Установлен»

RS-переключатель в этом состоянии имеет установленную цепь с Q, равным нулю, и Q¯, равным единице, и независим от управляемого сигнала. При этом на R присутствует ноль, на S – логическая единица.

Состояние «Сброшен»

Это тоже неизменная ситуация. Для её организации необходимо выставить исходные условия. На R подаётся «1», на S – «0». При этом выход Q должен иметь «1», Q¯ – значение «0». Обратные связи обеспечивают и фиксируют независимое от последующих значений на входах значение.

D-триггер

D-триггер отличается от синхронного RS-триггера тем, что у него только один информационный вход D. D-триггер показан на рисунке:

Если на вход D подать логическую единицу, затем на вход С подать импульс, то на выходе Q (прямой выход) установится лог. 1. Если на вход D подать лог. 0, на С импульс, то на Q установится лог. 0. Т. е. D-триггер осуществляет задержку информации, поступающей на вход D. При чем эта информация хранится в D-триггере, пока не придет следующий бит (0 или 1) информации. По сути это ячейка памяти.

Если вход D замкнуть с инверсным выходом, то останется только один вход С. При подаче на вход С импульса триггер переключится, т. е. если на выходе был лог. 0, то станет лог. 1. При следующем импульсе триггер снова переключится, т. е. лог. 1 сменится лог. 0. Таким образом, триггер осуществляет деление частоты входных импульсов на 2 (ведь уровень сигнала на выходе меняется в два раза реже). В таком режиме D-триггер называют счетнымили Т-триггером. Этот режим (режим деления частоты) используется довольно широко.

Нетрудно заметить, что для RS-триггера (рис. 1) существует запрещенная комбинация, когда на оба входа поданы лог. 1, на его выходах также устанавливаются лог. 1 и триггер перестает выполнять свои функции (зависает). Поэтому придумали так называемый JK-триггер. У него три входа — J, K, C. Вход J вместо R, вход К вместо S, С так и остается — синхронизацией. Если на вход J подана лог. 1, на К — лог. 0 или наоборот, то он работает как синхронный RS-триггер, если на оба входа J и К поданы лог. 1, то он работает как счетный Т-триггер.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Триггер Шмитта на операционном усилителе

Для построения триггера Шмитта используют компаратор на обычном операционном усилителе (ОУ) или же применяют специальную микросхему компаратора, и это встречается чаще.

Необходимо обратить внимание, что при использовании ОУ в триггере Шмитта, если входной сигнал является медленно нарастающим или имеет шумы, то существует вероятность того, что выход будет многократно переключаться, вследствие неполного закрытия-открытия выходного транзистора ОУ. Это связано с таким параметром ОУ как входное напряжение смещения

Обычный компаратор может быть легко преобразован в триггер Шмитта путем добавления положительно-обратной связи (ПОС) операционного усилителя или компаратора. Это обеспечивается добавлением резистора R3 в приведенной ниже схеме.

Эффект от данного резистора (R3) проявляется в том, что он смещает порог переключения зависящий от выходного состояния компаратора или операционного усилителя.

 Когда выходной сигнал компаратора является высоким, то это напряжение подается обратно на неинвертирующий вход операционного усилителя. В результате порог переключения становится выше. Когда же на выходе напряжение падает, то порог переключения также снижается. Это придает схеме так называемый гистерезис.

Применение положительно-обратной связи создает более высокий коэффициент усиления и, следовательно, переключение происходит быстрее. Это особенно полезно, когда входной сигнал медленно изменяющийся. Так же для увеличения скорости переключения триггера Шмита, параллельно резистору ПОС подключают так называемый скоростной конденсатор емкостью 10…100 пФ.

Довольно легко подобрать резисторы, необходимые для работы триггера Шмитта. Уровень напряжения, при котором необходимо, чтобы триггер переходил в свое противоположное состояние, задается делителем напряжения из резисторов R1 и R2. Это первое что необходимо сделать. Затем уже подбирается резистор обратной связи R3.

Триггер RS типа

Одной из простейших в цифровой электронике является схема RS-триггера на транзисторах. Внешним воздействием на вход прибора можно установить его выход в нужное устойчивое состояние. Схема устройства представляет собой каскады, выполненные на транзисторах. Вход каждого из них подключается к выходу противоположного. Два состояния определяются присутствием на выходе напряжения, а переход между ними происходит с помощью управляющих сигналов.

Работает схема следующим образом. Если в начальный момент времени VT2 будет закрыт, тогда через сопротивление R3 и коллектор будет течь ток, поддерживающий VT1 в режиме насыщения. Одновременно первый транзистор начнёт шунтировать базу VT2 и резистор R4. Режим отсечки VT2 соответствует значению логической единицы на выходе Q = 1, открытое состояние VT1 нулю, Q = 0. Амплитуда сигнала на коллекторе закрытого ключа определяется выражением: Uз = U * R3 / (R2+R3).

Для инверсии сигнала необходимо на вход R или S подать импульс. При этом если S = 1, то и Q = 1, а если R=1, то на выходе будет ноль. При значениях R1 = R2 и R3 = R4 триггер называется симметричным. Особенностью работы устройства является способность удерживать установленное состояние между импульсами R и S, что и используется для создания на нём элементов памяти.

На схемах RS-триггер обозначается в виде прямоугольника с подписанными входами S и R, а также возможными состояниями выхода. Прямой подписывается символом Q, а инверсный – Q. Информация может поступать на входы непрерывным потоком или только при появлении синхроимпульса. В первом случае устройство называют асинхронным, а во втором – синхронным (трактируемым).

Работа устройства наглядно описывается с помощью таблицы истинности.

Она наглядно показывает всевозможные комбинации, которые могут возникнуть на выходе прибора. Такая таблица составляется отдельно для триггера с прямыми входами и инверсными. В первом случае действующий сигнал равен единице, а во втором — нулю.

Применение триггера Шмитта

Наиболее часто триггер Шмита применяют в качестве формирователя сигнала начального сброса и установки при включении питания схемы. Такой сигнал необходим для приведения в исходное состояние микросхем имеющих внутреннюю память (регистры счётчики, микроконтроллеры). Схема такого формирователя приведена ниже



Схема формирователя импульса начального сброса и установки

Опишем работу данной схемы. Для формирования сигнала сброса и установки используется простая RC-цепочка. Напряжение на конденсаторе нарастает медленно и в результате на выходе триггера формируется положительный импульс.

Второе частое применение триггеров Шмита – это построение генераторов импульсов. В отличие от простых инверторов схема генераторов на триггере Шмита получается проще, так как используется всего один элемент, один конденсатор и один резистор, а использование двухвходового триггера Шмита позволяет реализовать управляемый генератор, когда на управляющий вход поступает лог. 1 генерация идёт, когда лог. 0 – отсутствует.

Схема управляемого генератора на триггере Шмитта.

И наконец, последнее применение триггера Шмитта, которое мы здесь рассмотри, состоит в подавлении так называемого дребезга контактов. Дребезг контактов состоит в том, что при замыкании и размыкании любого механического контакта формируются несколько паразитных коротких импульсов, которые могут нарушить работу цифровой схемы. Триггер Шмитта с RC-цепочкой на входе позволяет устранить эффект дребезга контактов, данная схема изображена ниже.

Схема подавления дребезга контактов на триггере Шмитта

Данная схема работает следующим образом, конденсатор заряжается довольно медленно, в результате чего короткие импульсы подавляются и не проходят на выход триггера Шмитта. Номинал верхнего резистора должен быть в 6 – 7 раз больше нижнего. Сопротивления выбираются порядка сотен Ом – единиц кОм. А ёмкость конденсатора зависит от того, какова продолжительность дребезга контактов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

10.3 Мультивибраторы на основе оу

Мультивибратор —
это генератор прямоугольных импульсов.
Мультивибратор преобразует постоянное
напряжение источника питания в импульсное
напряжение прямоугольной формы заданного
периода следования, скважности и
амплитуды. Мультивибратор
(рисунок 10.11) состоит из хронирующей
цепи (резистора
и конденсатора),
которая определяет временные параметры
периодической последовательности
прямоугольных импульсов и триггера
Шмидта, представляющего собой операционный
усилитель, охваченный положительной
обратной связью через резисторыи

Мультивибратор
(рисунок 10.11) состоит из хронирующей
цепи (резистора
и конденсатора),
которая определяет временные параметры
периодической последовательности
прямоугольных импульсов и триггера
Шмидта, представляющего собой операционный
усилитель, охваченный положительной
обратной связью через резисторыи.

Рисунок 10.11 — Схема
симметричного мультивибратора

Временная диаграмма
работы мультивибратора представлена
на рисунке 10.12. При включении питания
ОУ, напряжение на выходе принимает одно
из значений:
или.
Рассмотрим случай, когда напряжение на
выходе принимает значение,
под действием которого через резисторзаряжается конденсатор(интервал
0-1), напряжение на конденсаторе
увеличивается, стремясь к.
В точке 1 напряжение на конденсаторе
принимает значение напряжения срабатывания,
происходит переключение компаратора,
напряжение на его выходе принимает
значение.
На интервале 1-2 из-за изменения полярности
напряжения на выходе мультивибратора
начинается процесс перезаряда
конденсатора. Напряжение на конденсаторе
уменьшается, стремясь к.
В точке 2 напряжение на конденсаторе
становится меньше напряжения отпускания,
происходит переключение компаратора,
напряжение на его выходе принимает
значение.

Рисунок 10.12 -.
Временная диаграмма работы мультивибратора

Далее процессы
заряда и разряда конденсатора продолжаются
аналогичным образом. В результате на
выходе мультивибратора формируются
импульсы прямоугольной формы длительностью
,
с паузойи периодом следования.

Процесс заряда
описывается уравнением

,

(10.5)

решение
которого имеет вид

(10.6)

где

напряжение на конденсаторе при;


напряжение на конденсаторе при
:

Для определения
воспользуемся последним уравнением ,
в котором, как видно из временной
диаграммы (рисунок 10.12):

(10.7)

Разрешая эти
уравнения относительно
,
получим

(10.8)

Для определения
,
поступая аналогично, получим

(10.9)

Если
и,

(10.10)

Мультивибратор,
у которого
,
а скважность,
называют симметричным

Рисунок 10.13 —
Варианты цепей заряда хронирующего
конденсатора несимметричного
мультивибратора:

а —
,b

,
с – универсальный

Для получения
скважности
заряд конденсаторапроизводят по цепям, варианты которых
показаны на рисунке 10.13, а,b,
c. Поскольку
сопротивление в цепи заряда конденсатора
зависит от направления тока,

Поскольку
сопротивление в цепи заряда конденсатора
зависит от направления тока,

то для цепи а

(10.11)

для цепи b

(10.12)

для цепи c

(10.13)

Временная
нестабильность генератора
определяется, в основном, постоянством
параметров хронирующей цепи

(10.14)

где
относительное изменение сопротивления
резистора, которое зависит от температуры

(10.15)

относительное
изменение ёмкости конденсатора

(10.16)

При расчете схемы
следует соблюдать условия ограничения
по предельным режимам работы операционного
усилителя. Так дифференциальное и
синфазное напряжения не должны
превосходить допустимые значения

(10.17)

Дифференциальное
напряжение
принимает наибольшее значение справа
от точки 1, т.е. после переключения ОУ

(10.18)

Если учесть, что
ОУ не нагружен, то

(10.19)

Отсюда следует,
что при выборе резисторов
иследует соблюдать неравенство

(10.20)

Синфазное напряжение
принимает наибольшее значение слева
от точки 1, т.е. до переключения ОУ

(10.21)

Выбор значений
сопротивлений
,,в схеме производят с учетом максимально
допустимого токаоперационного усилителя

(10.22)

Выходной ток ОУ
образуется из трёх составляющих: тока
нагрузки
,
тока обратной связии тока заряда ёмкости,
который максимален в момент переключения
ОУ.

Если учесть, что
,
то

(10.23)

В случае
несимметричного мультивибратора это
условие должно выполняться для наименьшего
сопротивления зарядной цепи.

Триггер что это такое

Общие принципы запоминающих элементов представлены выше. Триггером называется устройство, способное поддерживать 2 или больше устойчивых состояния, которые меняются под воздействием входных сигналов. Фактически речь о способе хранения минимального количества информации – 1 бит.

Осциллограф — понятие и конструкция прибора

Любой триггерный автомат состоит из двух основных блоков. Первый – предназначен для сравнения или другого вида обработки входных сигналов. Второй – обеспечивает хранение данных и отображение состояния соответствующими выходными сигналами:

  • «1» – высокий уровень, прямой, Q;
  • «0» – низкое напряжение, обратный (инверторный), /Q.

Как правило, между функциональными блоками организована обратная связь. Входные сигналы также делят на группы:

  • информационные – R, T, S;
  • управляющие – V, C.

К сведению. Рабочие циклы описывают в табличной форме, которая наглядно показывает состояние памяти при разных комбинациях входных сигналов.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Синхронные и асинхронные триггеры

Эти группы созданы по принципу зависимости состояний выхода от синхроимпульсов.

Асинхронные триггеры

Изделия данного типа изменяют состояние хранящейся информации после поступления соответствующих данных на вход. Незначительная задержка объясняется временем прохождения сигнала по цепи переключающих элементов схемы.

Синхронные триггеры с динамическим тактированием

В этой группе представлены изделия, управляемые синхроимпульсами. Переключение состояния выполняется по переднему или заднему фронту. При отсутствии активности на C данные сохраняются в неизменном состоянии, вне зависимости от поступления новой информации.

Классификация

RS триггер

Изделия этой категории разделены на две основные группы по принципу сигналов управления. В первой – формируется заданная последовательность выходных сигналов, если установлено состояние «1». После переходе в «0» генерация прекращается. Вторая – способна переключать выходное напряжение соответствующим образом. Как правило, «1» примерно соответствует уровню источника питания.

Также триггеры различают по следующим параметрам:

  • синхронность рабочих циклов;
  • статические (динамические) способы управления;
  • сложность логических схем;
  • одно,- или двухступенчатые.

Триггеры на логических элементах и на операционном усилителе

Для реализации статических триггеров хорошо подходит схема усилителя с двумя каскадами. Связь между ними организуют прямую либо с ограничительными резисторами в соответствующих цепях.


Триггер на логических элементах

Триггер (Trigger) Шмитта

Изделия этой категории могут быть созданы с применением разной элементной базы. В данном разделе рассмотрен триггер Шмитта на транзисторах. Он управляется изменением аналогового сигнала. В зависимости от уровня напряжения, выполняется переключение состояния памяти в соответствующее положение «0» или «1».


Триггер Шмидта на транзисторах с подключенной нагрузкой

Подпишись на RSS!

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

    • Блок управления на SG3525 схема защиты
      25 ноября 2020
    • Микроомметр цифровой на базе модулей ADS1115 и TM1637
      7 октября 2020
    • Ампервольтваттметр для блока питания на INA226
      23 сентября 2020
    • Измеритель тока напряжения и мощности на INA226
      11 сентября 2020
    • Программа взаимодействия INA226 с микроконтроллером PIC
      29 июля 2020
    • Зарядное устройство для автомобильных аккумуляторов — 237 854 просмотров
    • Стабилизатор тока на LM317 — 173 987 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 125 302 просмотров
    • Реверсирование электродвигателей — 102 132 просмотров
    • Зарядное для аккумуляторов шуруповерта — 98 761 просмотров
    • Карта сайта — 96 471 просмотров
    • Зарядное для шуруповерта — 88 663 просмотров
    • Самодельный сварочный аппарат — 88 130 просмотров
    • Схема транзистора КТ827 — 82 766 просмотров
    • Регулируемый стабилизатор тока — 81 895 просмотров
    • DC-DC (5)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (34)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (30)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (17)
    • Защита радиоаппаратуры (8)
    • Зимний водопровод для бани (2)
    • Измерения (38)
    • Импульсные блоки питания (2)
    • Индикаторы (6)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (6)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (17)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (37)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (16)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (2)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (12)
  • Архивы
    Выберите месяц Ноябрь 2020  (1) Октябрь 2020  (1) Сентябрь 2020  (2) Июль 2020  (2) Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий