Как проверить источник опорного напряжения tl431

Особенности эксплуатации

TL431 обладает мощным корпусом, программируемым выходным напряжением, низким эквивалентным температурным и световым коэффициентом, не содержит свинца и имеет низкий выход шума сигнализатора. Проверяется мультиметром.

Принцип работы очень просто понять, смотря на структурную схему. В момент того, когда напряжение на выходе ниже, чем на опоре, то на конце операционный усилитель будет работать с такой же силой. Если же этот показатель будет в норме, то усилителем будет открыт транзистор и по катоду с анодом будет течь заряд.

Использование и принцип включения цоколевки TL431

Компенсационный стабилизатор напряжения

Принцип его работы такой же, как и у обычного стабилитрона. Благодаря разности напряжения у входа и выхода компенсируется мощного вида биполярный транзистор. Однако стабилизированная точность выше благодаря выходу стабилизатора.

Обратите внимание! Для стабилизации тока используется промежуточный вид усилительного каскада. Оба транзисторных устройства работают с эмиттерным повторителем, то есть усиливается ток и не повышается показатель силы

Подключение компенсационного стабилизатора напряжения

Реле времени

Важно понимать, что TL431 многофункциональный. Благодаря показателю в 4 микроампера входного тока, можно сделать реле времени

Когда основной контакт разомкнется, медленно начнет заряжаться транзистор. При получении напряжения в 2,5 вольт, транзистор на выходе будет открыт, и благодаря оптопаровому светодиоду будет протекать электроток. В соответствии с этим будет открыт фототранзистор и замкнута внешняя цепь.

Согласно приведенной ниже схеме, второй резистор осуществляет ограничение тока с помощью оптрона и стабилизатора, третий же предупреждает тот момент, чтобы зажегся светодиод.

Схема работы реле времени

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Видео

Раз дело «выгорело» и пробник теперь есть, осталось помнить об этом и суметь в случае необходимости быстро его идентифицировать из числа других в таких, же корпусах, что лежат в предназначенной для этого коробке. А ещё нужно помнить, что рабочее напряжение пробника 12 вольт, что при не подключённом TL431 мультиметр будет показывать напряжение 10 вольт, при подключённом 5 вольт, а при нажатой кнопке 2,5 вольта и вдобавок правильно установить проверяемый компонент в панельку.  А можно особо и не запоминать, а оформить соответствующим образом лицевую панель. Автор проекта: Babay iz Barnaula.

Схема электрическая тестера

В виртуальном пространстве интернета схем для такой проверки множество. Разницу между ними усмотрел в том, что одни сообщают – сигнализируют о исправности электронного компонента миганием – загоранием светодиодов, другие создают предпосылки для измерения напряжения на выходе, по величине которого и следует судить о исправности TL431. С одной стороны первые вроде как самодостаточны, в дополнение же ко вторым необходим вольтметр. С другой стороны первым нужно «верить на слово», вторые же сами ничего «не решают», а выдают объективную информацию для принятия решения. К тому-же вольтметр всегда под рукой. Выбрал второй вариант, он к тому же ещё и проще, «цена вопроса» — три постоянных резистора.

За подходящим корпусом, для помещения в него всего необходимого, дело не встанет, на сайте есть статья «Изготовление сетевой вилки с нестандартным корпусом». Начал с оборудования верхней крышки корпуса, для этого понадобились трёхвыводная панелька, кнопка нажимного действия и тетрадный лист в клеточку на котором был начерчен круг в соответствии с диаметром крышки и шилом намечены места установки панельки и кнопки. Вырезанный круг уже стал шаблоном, был помещён на крышку и на ней произведена шилом соответствующая разметка. Далее, тем-же шилом, были проколоты отверстия необходимого диаметра под контакты панельки и кнопки.

Так на верхнюю крышку установлены панелька и кнопка (их контакты загнуты изнутри и пропаяны оловом), на среднюю часть корпуса, в качестве разъёма питания, встал «тюльпан», на нижней крышке разместились штыри для подключения к мультиметру. То, что в качестве корпуса выступили некоторые части (две крышки и горлышко) пластиковой ёмкости (молочной бутылки) вероятно ясно и без пояснений.

Осталось с внутренней стороны крышки, на контактах панельки и кнопки смонтировать саму схему, в первую очередь установил три резистора, во вторую были припаяны все соединительные провода. Проводов получилось неожиданно много, тут спешить не надо — немудрено и перепутать.

В этот раз не стал для дополнительного крепления применять клей, а «посадил» всё на меленькие саморезы. По три штуки на каждом элементе. Так более ремонтопригодно, хотя и ремонтировать тут навряд ли, что-то понадобиться. Пробник собран, раз и на всегда. Осталось проверить его работу и соответственно исправность имеющихся в наличии источников опорного напряжения TL431.

Характеристика TL431

Этот операционный усилитель работает с напряжением от 2,5 до 36В. Ток работы усилителя колеблется от 1А до 100 мА, но есть один важный нюанс: если требуется стабильность в работе стабилизатора, то сила тока не должна опускаться ниже 5 мА на входе. У тл431 имеется величина опорного напряжения, которая определяется по 6-й букве в маркировке:

  • Если буквы нет, то точность равняется — 2%.
  • Буква А в маркировке свидетельствует о — 1% точности.
  • Буква В говорит о — 0,5% точности.

Более развернутая техническая характеристика изображена на рис.4

В описании tl431A можно увидеть, что величина тока довольна мала и составляет заявленные 100мА, а величина мощности, которую рассеивают эти корпуса, не превышает сотен милливатт. Этого мало. Если предстоит работать с более серьезными токами, то будет правильнее воспользоваться мощными транзисторами с улучшенными параметрами.

Простое зарядное устройство для литиевого аккумулятора.

Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения: – по току; – по напряжению;

Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.

А теперь список номиналов компонентов схемы:

Микросхема TL431 — это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания.

Проверка стабилизатора

Сразу возникает уместный вопрос о том, как проверить tl431 мультиметром. Как показывает практика, одним мультиметром проверить не получится. Для проверки tl431 мультиметром следует собрать схему. Для этого понадобятся: три резистора (один из них подстроечный), светодиод или лампочка, источник постоянного тока 5В.

Резистор R3 необходимо подобрать таким образом, чтобы он ограничил ток до 20мА в цепи питания. Его номинал составляет примерно 100Ом. Резисторы R2 и R3 выполняют роль балансира. Как только напряжение будет 2,5 В на управляющем электроде, то переход светодиода откроется, и напряжение пойдет через него. Эта схема хороша тем, что светодиод выполняет роль индикатора.

Источник постоянного тока — 5В является фиксированным, а управлять микросхемой tl431 можно с помощью переменного резистора R2. Когда питание на микросхему не подается, то диод не горит. После того как сопротивление изменяется при помощи подстроечного резистора, светодиод загорается. После этого мультиметр нужно включить в режим измерения постоянного тока и замерить напряжение на управляющем выводе, которое должно составлять 2,5. Если напряжение присутствует и светодиод горит, то элемент можно считать рабочим.

Что такое микросхема TL431?

Уж так сложилось, что все электронщики знают магические цифры TL431, аналог 494. Что это такое?

Предприятие «Texas Instrument» находилось у истоков разработки полупроводников. Они всегда были на первых местах в производстве электронных компонентов, постоянно удерживаясь в первой десятке мировых лидеров. Первая интегральная схема была разработана еще в 1958 г. работником этой фирмы Джеком Килби.

Сегодня фирма TI производит большой ассортимент микросхем, их название начинается с букв SN и TL. Это соответственно логические и аналоговые микросхемы, навсегда вошедшие в историю предприятия TI, и до сих пор имеют широкое использование.

В числе фаворитов в перечне «магических» микросхем нужно, вероятней всего, интегральный стабилизатор TL431. В 3-х выходном корпусе данной микросхемы установлено 10 транзисторов, а функция, исполняемая ей, идентична с простым стабилитроном (диод Зеннера).

Но благодаря этому усложнению, микросхема имеет повышенную крутизну характеристик и более высокую термостабильность. Основная же ее особенность заключается в том, что с помощью наружного разделителя напряжение стабилизации можно менять ток в диапазоне 2,6…32 Вольт. У современных TL431 аналог нижнего порога имеет 1,25 Вольт.

TL431 аналог разработал инженер Барни Холандом, когда он занимался копированием схемы стабилизатора другой фирмы. В нашей бы стране сказали сдирание, а не копирование. И Холанд позаимствовал из изначальной схемы источник опорного напряжения, и уже на этой основе разработал отдельную стабилизаторную микросхему. Вначале она имела название TL430, а после определенных доработок стана называться TL431.

С той поры прошло много времени, но нет сегодня ни одного блока питания для компьютера, где бы она не была установлена. Схема также нашла применение почти во всех импульсных немощных источниках питания. Один из этих источников сегодня есть в любом доме – это зарядка для мобильных телефонов. Этому долгожительству можно лишь позавидовать.

Также Холандом была разработана не менее известная и до сегодняшнего дня востребованная схема TL494. Это двухчастотный ШИМ — контроллер, на основе которого изготовлено множество видов источников питания. Потому цифра 494 также по праву является к «магической». Но перейдем к рассмотрению разных изделий на основе TL431.

Сигнализаторы и индикаторы

Схемы TL431 аналог может использоваться не только по своему непосредственному предназначению в качестве стабилитронов в блоках питания. На основе этой микросхемы возможно создание разных звуковых сигнализаторов и индикаторов освещения. При помощи этих устройств можно проверять множество разных параметров.

Для начала, это обычное напряжение электричества. Если же какую-то физическую величину при помощи датчиков представить в качестве напряжения, то можно создать оборудование, контролирующее, к примеру:

  • влажность и температуру;
  • уровень воды в баке;
  • давление газа или жидкости;
  • освещенность.

Сигнализатор критического тока

Принцип работы этого сигнализатор основан на том, что во время напряжения на электроде управления стабилитрона DA1 (выход 1) меньше 2,6 Вольт стабилитрон закрыт, сквозь него проходит только невысокий ток, обычно не больше 0.20…0.30 мА. Но данного тока хватает для слабого свечения диода HL1. Чтобы такого явления не происходило, можно параллельно диоду подсоединить резистор сопротивлением приблизительно 1…2 КОм.

Если напряжение на электроде управления более 2,6 Вольт, то стабилитрон откроется и загорится диод HL1. Требуемое ограничение напряжения через стабилитрон DA1 и диод HL1 создает R3. Наибольший ток стабилитрона имеет 100 мА, при этом такой же параметр у диода HL1 только 22 мА. Именно из данного условия и можно вычислить сопротивление резистора R3. Более точней сопротивление рассчитывается по нижеуказанной формуле.

R3=(Uпит – Uhl — Uda) / Ihl, где:

  • Uda – ток на открытой микросхеме (как правило, 2 Вольт);
  • Uhl – непосредственное падение тока на диоде;
  • Uпит – ток питания;
  • Ihl – напряжение диода (находится в диапазоне 4…12 мА).

Также нужно помнить о том, что наибольшее напряжение для TL431 только 36 Вольт. Данный параметр нельзя превышать.

Технические характеристики

Вид корпусов ТЛ431

Широкое применение получила благодаря крутости своих технических характеристик и стабильностью параметров при разных температурах. Частично функционал похож на известную LM317, только она работает на малой силе тока и предназначена для регулировки. Все особенности и типовые схемы включения указаны в datasheet на русском языке. Аналог TL431 будет отечественная КР142ЕН19 и импортная К1156ЕР5, их параметры очень похожи. Других аналогов особо не встречал.

Основные характеристики:

  1. ток на выходе до 100мА;
  2. напряжение на выходе от 2,5 до 36V;
  3. мощность 0,2W;
  4. температурный диапазон TL431C от 0° до 70°;
  5. для TL431A от -40° до +85°;
  6. цена от 28руб за 1 штуку.

Подробные характеристики и режимы работы указаны в даташите на русском в конце этой страницы или можно скачать tl431-datasheet-russian.pdf

Пример использования на плате

Стабильность параметров зависит от температуры окружающей среды, она очень стабильная, шумов на выходе мало и напряжение плавает +/- 0,005В по даташиту. Кроме бытовой модификации TL431C от 0° до 70° выпускается вариант с более широким температурным диапазоном TL431A от -40° до 85°. Выбранный вариант зависит от назначения устройства. Аналоги имеют совершенно другие температурные параметры.

Проверить исправность микросхемы мультиметром нельзя, так как она состоит из 10 транзисторов. Для этого необходимо собрать тестовую схему включения, по которой можно определить степень исправности, не всегда элемент полностью выходит из строя, может просто подгореть.

Стабилизатор тока

Представленная ниже схема это термостабильный вид токового стабилизатора. Резистор в данном случае это своеобразный шунт, который поддерживает токовое напряжение в размере 2,5 вольт. Так при пренебрегании токовой базы, можно получить ток, имеющий нагрузку Iн=2,5/R2. При формировании значения в Омах, ток будет представлен в Амперах и наоборот.

Стабилизатор тока на TL431 схема

Зарядное устройство для литиевого аккумулятора

Главным отличием зарядника от блока питания является четкое разграничение токового заряда. Следующая картинка представлена в двух ограничиваемых режимах: тока и напряжения. Пока выходное напряжение менее 4,2 вольт, осуществляется ограничение выходного тока. Как только оно достигнет этого показателя, то начнет электроток понижаться.

Следующая схема предусматривает ограничение электротока внешними транзисторами. R1 осуществляет шунтовую функцию, VT1 осуществляет открытие и закрытие второго транзистора. В этот момент напряжение в третьем падает. Ток падает и вовсе прекращается. Так осуществляется токовая стабилизация.

Обратите внимание! В момент подбора к 4,2 вольтовому уровню, функционировать начинает DA1 и осуществляет ограничение напряжения на выходе зарядника

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения — следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

  • DA1 – TL431K — если нет в наличии этого элемента, то его можно заменить на tl4311, tl783ckc ;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом;
  • VT1, VT2 – BC857B;
  • VT3 – az431 или az339p ;
  • VT4 – BSS138.

Необходимо обратить особое внимание на транзистор az431. Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий