Теплоэнергетика россии

Режимы работы электрических станций в энергосистеме.

Определяющее
влияние на режимы работы электростанции
оказывает непостоянство нагрузки
энергосистемы; нагрузка непрерывно
изменяется на протяжении суток, недели,
года. Изобразим суточный график нагрузки
энергосистемы для зимнего периода
времени.

Этот график имеет
2 максимума:

— дневной (в диапазоне
9-11ч местного времени);

— вечерний ( в
диапазоне 17-19 ч местного времени).

Эти максимумы
показывают пиковые нагрузки.

Весь график по
вертикали подразделяется на 3 части:

1. Базисная зона,
для которой 0 ≤ Рнг ≤ Рmin.

2. Полупиковая
зона: Рmin
Рнг ≤ Рср.

3. Пиковая зона:
Рср ≤ Рнг ≤ Рmaх.

Суточная
неравномерность графика нагрузки
объясняется неодинаковым потреблением
электроэнергии различными группами
потребителей в промышленности ит.д.

Режим работы
электростанций в энергосистеме
назначается диспетчерским управлением
системы с учетом типов электростанций
и их особенностей, с тем чтобы получить
наибольший экономический эффект по
системе в целом.

Режимы работы
ГЭС и ГАЭС

Режим работы ГЭС
в значительной степени зависит от
водохранилища. Если водохранилища нет,
то такая ГЭС работает в базисной зоне
со временем использования установки
мощности Туст=5000-6500 час/год.

Число
часов в году – 8760, а вырабатываемая
мощность зависит от водотока.

Если ГЭС имеет
платину и водохранилище, то часть
агрегатов такой ГЭС работает в базисной
зоне (режиме). Эти агрегаты обеспечивают
некоторый минимальный пропуск воды,
необходимый по условиям судоходства и
санитарным нормам.

Однако основная
часть гидроагрегатов работает в
переменной части графика нагрузки
энергосистемы – пиковой и полупиковой,
это объясняется высокими маневренными
свойствами гидроагрегатов, которые
запускаются всего за 3-5 минут, допускают
частые включения и отключения. Во время
паводка мощность ГЭС в базисной части
графика, с тем, чтобы после заполнения
водохранилища не сбрасывать бесполезно
избыток воды.

ГАЭС предназначены
для выравнивания суточного графика
нагрузки энергосистемы в часы провалов
нагрузки, они работают в насосном режиме,
перекачивая воду из нижнего бассейна
в верхний запасая таким образом
гидроэнергию.

В часы максимальной
нагрузки они работают в турбинном режиме
принимая на себя пиковую часть нагрузки
энергосистемы Туст=1000-1500 час/год.

Режим работы АЭС

Атомные электростанции
работают в базисном режиме, поскольку
регулирование их мощности затруднительно
и экономично. Это объясняется высокими
требованиями их надежности, низкими
маневренными свойствами оборудования
и низкой величиной топливной составляющей
затрат на эксплуатацию АЭС. Туст=6000-6500
час/год.

Режимы работы
ТЭЦ

Максимальная
экономичность ТЭЦ достигается в том
случае, если они работают по тепловому
графику, когда пропуск пара в конденсаторы
турбин минимальный, поэтому основным
режимом работы ТЭЦ является базисный
режим с числом часов использования
основного оборудования Туст=4500-5000
час/год.

В летнее время
ТЭЦ частично работают в конденсационном
режиме. Если возникает необходимость
снижения электрической нагрузки ТЭЦ в
ночное время, то их агрегаты можно
разгрузить на 15-30% в зависимости от типа
паровых турбин. При необходимости
большей разгрузки недостающее тепло
может быть получено с помощью редукционно
– охладительной установки (РОУ).

Режимы работы
КЭС (ГРЭС)

Конденсационные
электрические станции в зависимости
от применяемого оборудования могут
работать в базисном и полупиковом
режиме.

Время
использования Туст=4500-5000 час/год.
В полупиковом Туст =2000-3000 час/год.

В базисном режиме
работают наиболее крупные и экономичные
станции с мощными, но низко-маневренными
блоками имеющие высокие параметры пара
(давление 24 МПа, t=540 град.С).
Экономичность блоков определяется
минимальным расходом топлива. Для
газо-мазутных станций он составляет
315-320 г/кВт.ч, для угольных станций этот
расход больше. В ночное время нагрузка
блоков может быть снижена до некоторого
технологического минимума. Он составляет
для блоков на твердом топливе 60-75%
номинальной мощности блоков, на
газо-мазутном топливе – 50%.

К
блокам ЛЭС работающим в полупиковом
режиме предъявляются ограничения по
мощности и параметрам пара. Эти блоки
должны быстро набирать нагрузку в часы
максимума, однако это вызывает быстрое
изменение температуры в стенках котлов,
труб и т.д. и вызывает появление
температурных напряжений.

Для предотвращения
температурных напряжений в этих стенках
и предотвращения их разрыва стенки не
должны быть толстыми, поэтому параметры
пара для полупиковых блоков имеют
следующее значение (давление 13 МПа,
t=560 град.С).

Области использования солнечных коллекторов

Они востребованы там, где предполагается применение тепла. Технология производства солнечных коллекторов была создана в 1908 году. Уильям Бейли из компании Carnegie Steel Company разработал коллектор со специальным изолированным корпусом и медными трубками. Любой солнечный коллектор скапливает энергию в трубках и металлических пластинах, установленных на крыше здания. Для максимального поглощения радиации трубки выкрашены в черный цвет. Они располагаются в стеклянном либо пластмассовом корпусе, слегка наклонены к югу, чтобы в полной мере поглощать солнечный свет.

Коллектор можно представить в качестве небольшой теплицы, аккумулирующей тепло под стеклянной панелью. Так как солнечная радиация распределена равномерно по поверхности, коллектор должен обладать большой площадью. Солнечные коллекторы могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей.

Тепловые электростанции России

Ведущее положение в российской энергетике занимают тепловые электростанции, на долю которых приходится 67-68%, а общая численность составляет 358 единиц. В свою очередь ТЭС разделяются по видам используемого топлива. Среди них 71% работают на природном газе, 27% – на угле, остальные – на мазуте и других видах жидкого топлива.

Крупнейшие электростанции России в большинстве случаев привязаны к месторождениям топливно-энергетических ресурсов. За счет этого существенно снижаются транспортные расходы. Электростанции, работающие на мазуте, чаще всего располагаются возле крупных предприятий нефтепереработки.

Параллельно со стандартными ТЭС в России успешно работают ГРЭС, оставшиеся еще с советских времен. Их полное название – государственные районные электростанции, где слово «районная» означает не какую-то административную единицу, а определенную территорию, обеспечиваемую электроэнергией.

Флагманом российских ТЭС по праву считается Сургутская электростанция, мощностью 5600 мегаватт (рис. 1). Географически, как показывает карта, она расположена примерно посередине между Ханты-Мансийском и Нефтеюганском. Станция начала строиться в 1979 году, а пуск первого энергоблока состоялся в 1985 году. После этого в течение трех лет были введены в эксплуатацию все 6 энергоблоков. Мощность каждого из них составила 800 МВт.

Топливом служит попутный газ, образующийся при разработках газовых месторождений. Вместо обязательной утилизации, он используется в качестве энергетического ресурса. К настоящему времени введены в строй еще два блока по 400 МВт, функционирующие на очищенном природном газе.

Другая крупная станция – Рефтинская ГРЭС мощностью 3800 МВт (рис. 2), работающая на каменном угле. Она расположена на расстоянии 100 км от Екатеринбурга. Строительство объекта началось в 1963 году и продолжалось до 1980 года, когда был введен в эксплуатацию последний энергоблок. Характерной особенностью станции являются 4 трубы, высота которых составляет 180-320 м.

Электростанция находится в Костромской области на берегу реки Волги (рис. 3). Она состоит из девяти энергоблоков, которые постепенно вводились в эксплуатацию в период с 1969 по 1980 годы. Последний 9-й блок был самым мощным – 1200 мегаватт. После его запуска станция вышла на проектную мощность 3600 МВт. Электроэнергия вырабатывается за счет природного газа, а резервным топливом при необходимости становится мазут.

Пермская ГРЭС (рис. 4) с августа 2017 года заняла 6 место в общем рейтинге электростанций. После того как был запущен 4 блок, ее производительность возросла до 3260 мегаватт. Работа станции осуществляется на природном газе, а сама она расположена в 70 км от Перми.

Среди крупных тепловых электростанций следует отметить Рязанскую ГРЭС, расположенную в Новомичуринске Рязанской области. Строительство объекта началось в 1971 году и продолжалось в течение 10 лет. Вначале использовался каменный уголь, а после модернизации работа двух энергоблоков стала происходить на природном газе. В общей сложности станция оборудована 6 блоками, производительностью 3130 мегаватт.

Существующие приливные электростанции

В строительстве приливных электростанций выделяется несколько периодов:

  1. Появление первых двух ПЭС в 1960-х.
  2. Дополнение еще двумя ПЭС в 1980-х.
  3. Массовое (относительно предыдущих периодов) строительство, начиная с конца 2000-х.

Первая станция такого типа «Ля Ранс» была построена во Франции в 1966 году, спустя 2 года была открыта ПЭС в СССР.

В России

В 1968 году в СССР была введена в эксплуатацию Кислогубская приливная электростанция. С тех пор она единственная среди действующих ПЭС в России. Расположена она на Кислой губе в Мурманской области на берегу Баренцева моря. Вырабатываемая мощность Кислогубской ПЭС составляет всего 1,7 МВт, что в десятки раз ниже обычной тепловой электростанции. Это связано с низкой высотой приливов, которая составляет примерно 5 метров. С момента открытия станция используется в качестве экспериментальной базы по исследованиям в сфере извлечения энергии из приливной силы.

На основании опыта эксплуатации и действующих разработок в России запланированы новые приливные электростанции. Некоторые проекты разработали еще в советское время, другие – недавно в российское.

Список запланированных ПЭС в России:

  • Северная (Мурманская область, недалеко от Кислогубской), мощность 12 МВт;
  • Мезенская (Архангельская область), 8-24 ГВт;
  • Пенжинская (Магаданская область, Камчатский край), 87-120 ГВт;
  • Тугурская (Хабаровский край), 3,6 ГВт.

По планам новые российские ПЭС должны были бы вырабатывать в тысячи раз больше электроэнергии, но в итоге проекты не реализовались.

В мире

Современными лидерами в открытии и строительстве новых приливных электростанций являются две страны: Великобритания и Республика Корея. До 2011 года первая в мире построенная ПЭС была одновременно и самой мощной – это французская «Ля Ранс». Ее мощность составляет 240 МВт, но в 2011 году в Корее открыли станцию мощностью 254 МВт – Сихвинскую ПЭС. Это динамическая приливная электростанция, растянувшаяся более чем на 12 километров вдоль берега. На стадии строительства в Корее еще 2 более мощные станции: на 800-1300 МВт, 520 МВт. В Великобритании планируется открытие 2 станций: на 400 МВт и 8,6 ГВт.

В остальных странах мира ПЭС имеют экспериментальный характер и вырабатывают минимум энергии. Среди таких стран: Канада (20 МВт), Китай (3,2 МВт), Нидерланды (1,2 МВт), Индия (план на 50 МВт), Норвегия (на несколько лет открывалась станция на 0,3 МВт

Электростанции бывают различных типов

В современном мире для выработки большого количества энергии используются электростанции. Область эксплуатации электрических станций достаточно широкая, в частности, они могут применяться для снабжения энергий удаленных зданий и сооружений во множестве отраслей промышленности.

Типы электростанций

Электростанции бывают различных типов, наиболее распространенными из которых являются:

  • Тепловые
  • Гидравлические
  • Атомные

Тепловые станции, осуществляющие выработку энергии, отличаются быстротой возведения и дешевизной, по сравнению с иными разновидностями. Данный тип электростанции способен функционировать надлежащим образом без сезонных колебаний. Несмотря на неоспоримые достоинства, различные типы электростанций имеют несколько собственных недостатков. К примеру, ТЭС работают на невозобновимых ресурсах, создают отходы и режим их работы изменяется медленно, поскольку для разогрева котельной установки требуется несколько суток.

Гидравлические электростанции более экономичны и просты в управлении. Для обслуживания данных станций не требуется многочисленного персонала. Помимо всего прочего, ГЭС обладают продолжительным сроком полезного использования, превышающим 100 лет, а также маневренностью при изменении нагрузки. Невысокая себестоимость производимой энергии является одной из причин большого распространения гидравлических станций на сегодняшний день. Проблема гидроэлектростанций состоит в том, что на их возведение уходит от 15 до 20 лет и процесс строительства осложняется затопление больших площадей плодородных земель. В отдельных случаях могут возникнуть дополнительные проблемы с выбором места для возведения объекта.

Атомные станции функционируют на ядерном топливе и чаще всего размещаются в тех местах, где требуется электрическая энергия, но отсутствуют прочие источники сырья. Около 25 тонн топлива позволяют станции работать на протяжении нескольких лет. Действие АЭС не становится причиной увеличения парникового эффекта, а процесс выработки энергии осуществляется без загрязнения окружающей среды.

Основы функционирования электростанций

Вне зависимости от того, какие бывают электростанции, они по большей части используют энергию вращения вала генератора. Назначение генератора заключается в том, что он:

  1. Должен обеспечивать продолжительную стабильную параллельную работу с энергосистемами различной мощности, а также функционирование на автономную нагрузку
  2. Претерпевает моментальный сброс и наброс нагрузки, сопоставимой с его номинальной мощностью
  3. Выполняет защитную функцию благодаря наличию специальных устройств
  4. Запускает двигатель, обеспечивающий функционирование станции

Электростанции являются наиболее оптимальным способом выработки энергии по ряду факторов. На сегодняшний день не существует аналогичных методов, которые смогут обеспечить производство электроэнергии в настолько больших масштабах.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Важные аспекты

Применение энергии солнца оправдано только в тех климатических условиях, где слишком высока стоимость одного киловатта. К примеру, это северные районы России.

В России средняя цена на солнечные батареи мощностью 100 Вт составляет 5-6 тысяч рублей, мощностью в 200 Вт – около десяти тысяч рублей руб. Минимальная цена одного ватта электроэнергии, получаемой от солнечных батарей, находится в пределах 55-60 рублей. В основе многих энергетических систем используется солнечный коллектор. Он поглощает световую энергию Солнца, преобразует ее в тепло, которое подается теплоносителю (жидкости или воздуху) и далее применяется для обогрева жилых зданий, нагревания воды, производства электричества, просушивания сельскохозяйственных товаров либо приготовления пищи.

Энергосистемы

Энергосистемы — совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Новые энергообъекты добавили киловатты в общий котел

Суммарная установленная мощность электростанций ЕЭС России в прошлом году составила 239 812, 2 МВт. Годом ранее этот показатель равнялся 236 343,63 МВт. Показатели удалось увеличить за счет ввода новых мощностей и наращивания установленной мощности уже работающего оборудования. Самыми популярными в прошлом году стали паросиловые установки (ПСУ), они заняли 80% от общего числа внедренного оборудования. Парогазовые установки (ПГУ) составили 14,6% по распространенности и 4,5% в общем котле у газотурбинных установок (ГТУ); 0,5% отвели другим вариантам энергооборудования.

Всего за последние 2 года было введено 7,9 ГВт установленной мощности. Среди крупнейших введенных мощностей: Троицкая ГРЭС (0,7 ГВт), Ново-Салаватская ПГУ (0,4 ГВт), Верхнетагильская ГРЭС (0,5 ГВт), Ярославская ТЭС (0,5 ГВт), Казанская ТЭЦ-3 (0,4 ГВт).

Установленная мощность солнечных электростанций выросла в 2017 году в 7,1 раза, ветряных — в 12,3 раза. Несмотря на существенный прирост, их доля в общей энергетической мощности ЕЭС России остается по итогам 2017 года мизерной — 0,22% солнечных электростанций и 0,06% ветряных. Но в совокупности с ГЭС доля ВИЭ в электрической мощности ЕЭС России составляет 20,5%.

Установленная электрическая мощность электростанций (мегаватт (тысяча киловатт), значение показателя за год)

Регион РФ 2017 2016 2015 2014 2013
Россия 272 448,8 266 527,7 257 075,2 255 951,5 242 150
Тюменская область 21 146,3 20 626,6 20 641,3 19 547,5 18 612,4
Красноярский край 18 446,4 18 374,3 18 441,2 17 629,5 16 543,6
г. Москва 16 505,8 16 748,9 10 548,5 10 420,4 9 800,2
Ханты-Мансийский автономный округ — Югра (Тюменская область) 15 492,7 15 049,9 15 347,4 14 410,3 13 638
Иркутская область 13 626,3 13 591,6 13 531,1 13 588,2 13 463,8
Свердловская область 12 212,9 10 926 9 411,9 9 893,2 9 910,4
Ленинградская область 11 585,8 9 997,7 8 326,4 8 293,7 8 352,5
Республика Татарстан (Татарстан) 8 140,4 7 720,9 7 332 7 304,5 7 049,2

По опубликованному отчету «Сведения о производстве и распределении электрической энергии» №23-Н, наибольшая установленная мощность электростанций значится у Тюменской области — 21 146,3 МВт. На втором месте Красноярский край, совокупная мощность его станций составляет 18 446,4 МВт. «Бронза» в этом списке досталась Москве с установленной мощностью 16 505,8 МВт.

Следом за Татарстаном в ПФО по показателю установленной мощности лидирующие позиции занимает Пермский край (7,9 ГВт). В 2017 году на Пермской ГРЭС ввели в эксплуатацию четвертый парогазовый энергоблок установленной мощностью 861 МВт. Мощность станции возросла на треть — до 3 363 МВт, благодаря чему Пермская ГРЭС вошла в пятерку крупнейших теплоэлектростанций России.

Замыкает тройку лидеров ПФО Саратовская область с установленной мощностью в 2017 году 6 709,6 МВт. У Саратова есть мощный ресурс в виде Балаковской АЭС, которая в год вырабатывает более 31 млрд киловатт-часов электроэнергии, что фактически в два раза больше, чем потребляют жители области. Добавим, хотя область и сумела удержаться в лидерах, ее показатель установленной мощности в прошлом году упал на 1%, годом ранее он составил 6 736,4 млн кВтч. Вероятно, это связано с выводом устаревшей генерации.

Говоря о вводе новых мощностей в ПФО, нужно отметить установку ПГУ мощностью 432 МВт на Ново-Салаватской ТЭЦ в Башкирии, введенной в 2016 году. Также среди крупных проектов Приволжского федерального округа — недавний ввод в эксплуатацию Затонской ТЭЦ, строительство которой началось еще в 2008 году в Башкортостане, а окончательно завершилось в марте нынешнего года. Установленная электрическая мощность станции составляет 418 МВт.

Самая маленькая установленная мощность у Еврейской автономной области, в 2017 году она составила 5,7 МВт. При этом нужно отдать должное области — несмотря на низкие показатели, ЕАО ежегодно наращивает свои мощности. Так, в 2015 году этот показатель составлял всего 3,6 МВт, в 2016-м — 5,3 МВт.

Более чем в два раза снизилась установленная мощность в Республике Тыва. Если в 2016 году этот показатель составлял 98,6 МВт, то в 2017 году он составил 45 МВт. В список регионов аутсайдеров по динамике установленной мощности также вошла Брянская область, ее показатель упал с 58,9 МВт в 2016 году до 42,2 МВт в 2017 году. В ПФО показатели снизились у Удмуртии. Ее установленная мощность упала с 836,4 МВт в 2016 году до 773 МВт в 2017 году. Скорее всего, падение связано с реконструкцией одной из старейших станций республики, Ижевской ТЭЦ-1, и выводом из эксплуатации устаревшего оборудования.

Электроэнергетическая отрасль, ее состав

Определение 1

Электроэнергетика – это энергетическая отрасль, которая занимается производством, передачей и сбытом электроэнергии.

Она является одной из значимых отраслей народного хозяйства, так как обеспечивает функционирование реального сектора и комфорт домашних хозяйств. Ее отличительными особенностями являются легкость передачи электроэнергии на большие расстояния. Впервые электричество стало использоваться в практической деятельности в конце девятнадцатого века. В то время оно применялось для работы телеграфа, военной техники. Электричество в то время вырабатывалось с помощью гальванических элементов. Следующим этапом массового распространения электроэнергии стало изобретение генераторов. Они имели большую мощность и длительность выработки электричества. В этот период стали создаваться первые станции и сети, которые впоследствии легли в основу новой отрасли.

Электроэнергетическая отрасль долгое время конкурировала с газовыми компаниями, так как его стоимость была выше. В последствие техническое усовершенствование оборудования позволило полностью вытеснить газовое. Стимулом к развитию отрасли стало создание трамваев, которые были крупнейшими потребителями электроэнергии. Сейчас электроэнергетика является неотъемлемой частью жизни общества и производственной деятельности.

Генерация электроэнергии может производиться:

  1. Тепловыми электростанциями, которые преобразуют в электричество энергию тепла, получаемого за счет сгорания органического топлива.
  2. Атомными электростанциями, использующими энергию распада атомов урана.
  3. Гидроэлектростанциями, использующими силу потока воды. Для того, чтобы производить электроэнергию строится система плотин, которая формирует перепад уровней поверхности воды. За счет перетекания воды запускаются турбины, вырабатывающие электроэнергию.

Замечание 1

Существует альтернативные источники энергии. К ним относят выработку энергии с помощь ветра, солнечного света, энергии тепла земли.

Структура и обоснованная необходимость в их применении

К нетрадиционным источникам энергии относят:

  • солнечную;
  • ветровую;
  • геотермальную;
  • энергию морей, рек, приливов;
  • биоэнергетику;
  • энергию атмосферного электричества и грозовую энергетику.

Увеличение населения Земли требует больших энергетических затрат. Запас полезных ископаемых, представляющих традиционные источники, не безграничен. Поэтому ведется активный поиск путей решения энергетической проблемы

Переход на использование чистых, природных источников является важной вехой в развитии человечества

Основные причины, побуждающие к переходу на АЭИ:

  1. Глобально-экологическая. Применение традиционных энергодобывающих технологий ведет мир к глобальной экологической катастрофе. Одно из таких последствий – изменение климата, которое длится уже несколько лет.
  2. Политическая. Страна, освоившая АЭИ первой, сможет диктовать цены на топливные ресурсы.
  3. Экономическая. Переход на нетрадиционные энергетические технологии даст возможность перераспределить топливные ресурсы для развития промышленности. Стоимость альтернативной энергии значительно ниже, чем электроэнергии, получаемой из традиционных источников.
  4. Социальная. С ростом численности населения становится сложным найти место для строительства АЭС и ГРЭС, которое было бы безопасным для окружающих. Исследования показали, что у населения, проживающего неподалёку от таких станций, подтвержден больший процент онкологических и других тяжелых заболеваний.
  5. Эволюционно-историческая. Объем топливных ресурсов ограничен, биосфера и атмосфера страдают от их использования. Эти факторы тормозят процесс эволюции человечества. Переход на альтернативные источники энергии будет толчком к новому этапу развития.

Заключение

Отдельного внимания заслуживает солнечная энергия. Именно этот альтернативный источник энергии вызывает интерес не только у отдельных граждан, но также и у государственных структур.

Солнечные дистилляторы позволяют не только нагревать воду, но и проводить ее дистилляцию. В качестве исходного сырья допускается не только пресная, но и морская вода. Основой их работы является испарение воды из незакрытого источника.

Горячее водоснабжение является распространенным вариантом прямого использования солнечной энергии. Типичная установка предполагает один либо несколько коллекторов, в которых происходит нагрев жидкости на солнце. Кроме того, есть бак для размещения нагретой жидкости.

Даже в регионах, для которых характерно незначительное количество солнечной радиации в год, например, в Архангельской области, с помощью солнечной установки можно обеспечить более половины потребности населения в горячей воде. Подогрев воды с помощью энергии Солнца — очень практичный и экономный способ, коэффициент полезного действия составляет 50-90 %.

Если иметь еще и небольшую деревосжигающую печь, можно удовлетворять бытовую потребность в горячей воде практически круглый год без применения ископаемых видов топлива.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий