Измерительные приборы их виды и предназначение

Какие методы измерения чаще всего используют на практике?

Стоит отметить, что в исследованиях применяется два приема. Основные методы измерений – непосредственная оценка и сравнение с мерой. В первом случае искомый параметр находится непосредственно по отсчетной шкале прибора прямого действия – по линейке, манометру, термометру и пр. Второй метод измерения предполагает сравнение искомого показателя с параметром, воспроизводимым мерой. К примеру, чтобы установить диаметр калибра, оптиметр фиксируется на нулевой отметке по блоку концевых значений длины. Результат получают по показателям стрелки, отклоняющейся от 0. Искомый параметр сравнивается с концевыми значениями.

Международная система

Она была принята в 1960 г. на XI Генеральной конференции. Система предусматривает перечень семи ключевых единиц измерения. К ним относятся метр, секунда, ампер, моль, килограмм, кельвин, кандела. В системе также предусмотрены две дополнительные единицы — стерадиан, радиан, а также приводятся приставки для образования дольных и кратных параметров. В СИ определены и производные значения. Они образуются при помощи простейших уравнений физических параметров, числовые коэффициенты которых равны 1. Эти значения применяются, например, при определении равномерности в линейной скорости при прямолинейном движении. Допустим, длина пути, который был пройден, v = l/t (м), время, потраченное на это, — t (с). Скорость получится в метрах в секунду. На практике принято использовать сокращение – м/с. Эта единица, таким образом, выражает скорость равномерно и прямолинейно перемещающейся точки, при которой она за секунду продвигается на метр. Аналогично образуются и остальные показатели, в том числе те, коэффициент в которых — не единица.

Измерение, методы измерений: определения

Результатом процесса является нахождение значения параметра Q. Оно устанавливается, исходя из числового показателя величины (q) и ее единицы (U). Общая формула выглядит так:

Q=qU.

Принципом измерения называют явление либо комплекс феноменов, которые используются в качестве основы процесса. К примеру, масса тела устанавливается с помощью взвешивания с применением силы тяжести, которая пропорциональная весу, а температура – с помощью термоэлектрического эффекта. Методы и средства измерений выбираются в зависимости от характеристик объекта, цели процедуры

Немаловажное значение имеют и возможности исследователя. Метод измерения – комплекс специальных приемов, через которые реализуются принципы процесса

Их группировка производится по различным признакам. Средства измерения имеют метрологические нормированные свойства.

Дополнительно

В зависимости от используемых средств, различают органолептический, эвристический, экспертный, инструментальный методы измерения. Последний основывается на использовании технических устройств. Они могут быть механическими, автоматическими, автоматизированными. Например, часто используются инструментальные методы измерения уровня давления. Экспертное исследование основывается на мнении группы специалистов. Эвристический метод базируется на интуиции. Органолептические исследования предполагают использование органов чувств. Изучение состояния объекта проводится также комплексными и поэлементными методами. Последний предполагает изучение каждого параметра предмета в отдельности. К примеру, могут оцениваться овальность, огранка цилиндрического вала и пр. Комплексный метод предполагает измерение суммарного показателя, на который влияют отдельные свойства объекта. К примеру, может выполняться исследование радиального биения, находящегося в зависимости от эксцентриситета, овальности и так далее.

Деление по способу снятия измерений

Кроме такого деления, измерительные приборы можно разделить по способу снятия результатов измерений:

  • прямого действия
  • сравнения

Приборы прямого действия

К первому виду относятся приборы, позволяющие снять результат измерений непосредственно с индикаторного устройства.

Например: манометр, амперметр, вольтметр, ртутный стеклянный термометр.

Манометры точных измерений применяются для измерения давления неагресcивных к медным сплавам жидких и газообразных

Эти приборы относятся к устройствам непосредственной оценки результатов измерений.

Приборы сравнительные — Компаративные измерительный приборы

Р353 мост постоянного тока — потенциометр электроизмерительный

Двухчашечные весы, мост электрического сопротивления, потенциометр электроизмерительный – это приборы, которые относятся к приборам сравнения, поскольку результат измерений, который можно получить с их помощью, сравниваются со значением известной величины.

Их называют компараторами.

Они должны при проведении измерений обеспечивать высокую чувствительность измерений и небольшую случайную погрешность.

Следующая статья: Поверка и калибровка средств измерения: виды и контроль результатов

Еще полезные статьи:

Точность

Основные статьи: Точность, Погрешность измерения, Неопределённость измерения

  1. Точность средства измерений — степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью воспроизводимости. Точность измерительного прибора, откалиброванного по эталону, всегда хуже или равна точности эталона.
  2. Точность результата измерений — одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Следует отметить, что о повышении качества измерений всегда говорят термином «увеличить точность» — притом, что величина, характеризующая точность, при этом должна уменьшиться.

Погрешность измерения

Оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).

Классы

Они устанавливаются в зависимости от условий, определяющих точность показателя. Выделяют следующие классы:

  1. Измерения максимально допустимой точности, которая может достигаться при существующем техническом уровне. В данный класс включаются все высокоточные оценки. В первую очередь, к ним относят эталонные измерения. Они связаны с максимально вероятной точностью воспроизведения заданных единиц физических значений. К этому классу относят также оценку констант, универсальных, в первую очередь. Примером может выступать нахождение абсолютного показателя ускорения при свободном падении.
  2. Контрольно-проверочные измерения. Их погрешность с установленной вероятностью не должна быть выше заданного показателя. В данный класс включаются все измерения, которые производятся в лабораториях государственного надзора за выполнением требований техрегламентов, контроля измерительной техники. Такие оценки состояния объектов гарантируют погрешность с некоторой вероятностью, которая не превышает заданного заранее значения.
  3. Технические измерения, погрешность в которых устанавливается по характеристикам используемых средств. В качестве примера может служить оценка состояния объектов, осуществляемая в производственных условиях на промышленном предприятии, в сфере обслуживания и пр.

Измерительные преобразователи

СрИзм, предназначенные для преобразования измеряемой величины в другую однородную или неоднородную величину с целью представления измеряемой величины в форме, удобной при обработке, хранении, передаче в показывающее устройство. Измерительные преобразователи не имеют устройств отображения измерительной информации, поэтому они входят в измерительные приборы или применяются вместе с ними.

Различают:

  • Первичные преобразователи — предназначены для непосредственного восприятия измеряемой величины, как правило, неэлектронной и преобразовывая ее в электрическую (например, датчики).
  • Промежуточные преобразователи – преобразователи, расположенные в измерительной цепи первичного преобразователя и обычно по измеряемой физической величине, однородные с ним.

Пример: овременные измерительные преобразователи нередко оснащаются и цифровыми, и аналоговыми выходными цепями. Примерами таких преобразователей являются Е854ЭЛ, Е856ЭЛ и Е849ЭЛ

Совокупность конструктивно объединенных первичных и промежуточных преобразователей носит название «измерительные приборы».

Способ отражения результата

По этому признаку различают относительные и абсолютные измерения. Последними называют те, которые базируются на прямых исследованиях одного или нескольких показателей, либо на применении значений констант. К таким исследованиям относят нахождение длины в метрах, показателя силы тока в амперах, ускорения в м/сек. Относительными считаются измерения, в рамках которых искомый показатель сравнивается с одноименным параметром, выступающим в качестве единицы, или принятым за исходный. Так, например, находят диаметр обечайки по количеству оборотов ролика, показатель влажности, которая устанавливается по соотношению объема пара в 1 м3 воздуха к количеству паров, насыщающих его при заданной температуре.

Совокупные исследования

В ходе них используются методы измерения величин, предполагающие повторное нахождение одного или нескольких одноименных параметров при разных их сочетаниях или их мерах. Искомый показатель устанавливается при решении системы уравнений. Они, в свою очередь, составляются по параметрам, полученным при нескольких прямых измерениях.

Рассмотрим пример. Необходимо определить массу отдельных гирь в наборе. То есть, нужно провести калибровку по известному весу одной из них, полученному при прямых измерениях, и сравнить показатели при разных сочетаниях объектов. В наборе присутствуют гири, масса которых 1, 2, 2*, 5, 10, 20 кг. Все они, за исключением третьей, представляют собой образцы разного веса. Гиря со звездочкой имеет параметры, отличающиеся от точного показателя 2 кг. Калибровка заключается в установлении массы каждого предмета по одному образцу, к примеру, по объекту, весом в 1 кг. Нахождение параметра осуществляется в процессе изменения комбинации гирь. Необходимо составить уравнения, в которых цифрами обозначаются массы отдельных объектов. К примеру, 1 образец соответствует весу в 1 кг. В таком случае 1=1об + а; 1+ 1 об = 2 + b; 2* = 2 + с и так далее. Дополнительные массы, которые нужно прибавлять к весу гири, стоящему в правой части или отнимать от нее для уравновешивания, обозначаются а, b, с. При решении системы уравнений можно установить значение массы для каждой гири.

Измерительные устройства. Классификация измерительных устройств.

Средства
измерений

представляют собой совокупность
технических средств, используемых при
различных измерениях и имеющих
нормированные метрологические свойства.
Средство
измерений

– техническое средство, предназначенное
для измерений, имеющее нормированные
метрологические характеристики,
воспроизводящее и (или) хранящее единицу
физической величины, размер которой
принимают неизменным (в пределах
установленной погрешности) в течение
известного интервала времени. К средствам
измерений относят: меры, измерительные
приборы, измерительные преобразователи,
измерительные установки и измерительные
системы.Мера
– средство измерений, предназначенное
для воспроизведения и (или) хранения
физической величины одного или нескольких
заданных размеров, значения которых
выражены в установленных единицах и
известны с необходимой точностью. Меры
бывают однозначные и многозначные.Измерительный
прибор

– средство измерений, предназначенное
для получения значений измеряемой
физической величины в установленном
диапазоне. Измерительный
преобразователь

– техническое средство с нормативными
метрологическими характеристиками,
служащее для преобразования измеряемой
величины в другую величину или
измерительный сигнал, удобный для
обработки, хранения, дальнейших
преобразований, индикации или передачи.По
характеру
преобразования

различают аналоговые, цифро-аналоговые,
аналого-цифровые преобразователи. По
месту в измерительной цепи различают
первичные и промежуточные преобразователи.
Выделяют также масштабные и передающие
преобразователи. В практике электрических
измерений наибольшее распространение
получили масштабные преобразователи.
Измерительная
установка

– совокупность функционально объединенных
мер, измерительных приборов, измерительных
преобразователей и других устройств,
предназначенная для измерений одной
или нескольких физических величин и
расположенная в одном месте. Измерительная
система

– совокупность функционально объединенных
мер, измерительных при­боров,
измерительных преобразователей, ЭВМ и
других технических средств, размещенных
в разных точках контролируемого объекта
и т.п. с целью измерений одной или
нескольких физических величин,
свойственных этому объекту, и выработки
измерительных сигналов в разных целях.
Наиболее многочисленная группа СИ —
измерительные приборы и преобразователи,
которые обобщенно называются измерительными
устройствами (ИУ).

Классификация
ИУ:

1.
По используемым физическим процессам
ИУ: механические, электромеханические,
электронные, оптоэлектронные и т.п.

2.
По физической природе измеряемой
величины: вольтметры, амперметры,
термометры и т.д.

3.
По виду измеряемой величины или сигнала
измерительной информации, а также по
способу обработки сигнала приборы
делятся на аналоговые и цифровые. В
аналоговых приборах показания являются
непрерывной функцией измеряемой
величины,

4.
По виду сохранения информации:
показывающие, допускающие только
отсчитывание показаний, и регистрирующие,
в которых предусмотрена автоматическая
регистрация показаний.

5.
По структурным признакам ИУ можно
классифицировать по числу каналов и по
временной последовательности
преобразований входных сигналов: одно-,
двух- и многоканальными.

6.
В зависимости от временной последовательности
преобразований входных сигналов
различают ИУ с одновременным (параллельным)
и последовательным преобразованием.

7.
По точности ИУ делят на образцовые,
используемые для поверки других ИУ и
утвержденные в качестве образцовых, и
рабочие, используемые непосредственно
в практических измерениях, не связанных
с передачей размера единиц.

8.
По частотному диапазону ИУ делят на
низкочастотные (НЧ), высокочастотные
(ВЧ) и сверхвысокочастотные (СВЧ), по
ширине полосы частот – на широкополосные
и избирательные (селективные).

9.
По месту использования ИУ делят на
лабораторные и производственные.

Метрологические характеристики средств измерений

Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения ими их функционального назначения. Согласно ГОСТ 8.009-84, метрологическими характеристиками называются технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, предназначенные для оценки технического уровня и качества средства измерений, для определения результатов измерений и расчётной оценки характеристик инструментальной составляющей погрешности измерений.

Характеристики, устанавливаемые нормативно-техническими документами, называются нормируемыми, а определяемые экспериментально — действительными. Ниже приведена номенклатура метрологических характеристик:

  • Характеристики, предназначенные для определения результатов измерений (без введения поправок):
    • Функция преобразования измерительного преобразователя, а также измерительного прибора с наименованной шкалой;
    • Значение однозначной меры;
    • Цена деления шкалы измерительного прибора или многозначной меры;
    • Вид выходного кода для цифровых средств измерений;
  • Характеристики погрешностей средств измерений;
  • Характеристики чувствительности средств измерений к влияющим величинам;
  • Динамические характеристики средств измерений

Характеристики погрешностей средств измерений

Приведённая погрешность — это отношение максимально возможной абсолютной погрешности к нормирующему значению:

γ=ΔxmaxxN{\displaystyle \gamma ={\frac {\Delta x_{\textrm {max}}}{x_{\textrm {N}}}}}

Так же как и относительная, является безразмерной величиной; её численное значение может указываться, например, в процентах.

В технике применяют приборы для измерения лишь с определённой заранее заданной точностью — основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора. В различных областях науки и техники могут подразумеваться различные стандартные (нормальные) условия (например, Национальный институт стандартов и технологий США за нормальную температуру принимает 20 °C, а за нормальное давление — 101,325 кПа); кроме того, для прибора могут быть определены специфические требования (например, нормальное рабочее положение). Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора — например, температурная (вызванная отклонением температуры окружающей среды от нормальной), установочная (обусловленная отклонением положения прибора от нормального рабочего положения), и т. п.

Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)×10n, где показатель степени n = 1; 0; −1; −2 и т. д.

Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Обусловлена она нарушениями статистической устойчивости.

Статическая — погрешность системы измерения, возникающая при измерении неизменной во времени физической величины.

Динамическая — погрешность системы измерения, возникающая при измерении переменной физической величины, обусловленная несоответствием реакции системы измерения на скорость изменения измеряемой физической величины.

Аддитивная — погрешность, независящая от чувствительности прибора и являющаяся постоянной для всех значений входящей величины в пределах диапазона измерений.

Мультипликативная — погрешность, зависящая от чувствительности прибора и меняющаяся пропорционально к текущему значению входной величины.

Примечания

  1. ↑ Метрология и технические измерения. Колчков В. И. Ресурс «ТОЧНОСТЬ-КАЧЕСТВО»]
  2. Официальное название по ГОСТ 8.417-2002 Государственная система обеспечения единства измерений. Единицы величин.
  3. «Не допускается применять термин единица измерения физической величины или единица измерения вместо стандартизированного термина единица физической величины или единица, поскольку понятие измерение определяют через понятие единица. Надо писать: ампер — единица силы тока, квадратный метр — единица площади и нельзя писать: ампер — единица измерения силы тока, квадратный метр — единица измерения площади» (Словарь-справочник автора / Сост. Л.А.Гильберг и Л.И.Фрид. — М.: Книга, 1979. — С. 98–99. — 304 с.).
  4. Аналогичная вариативность имеется и в иностранной терминологии. Так, в английском языке наряду с термином unit используется unit of measure(ment): Are, a metric unit of measurement, equal to 100 square metres (Concise Oxford English Dictionary, 11th edition, 2004).
  5. По историческим причинам, название «килограмм» уже содержит десятичную приставку «кило», поэтому кратные и дольные единицы образуют, присоединяя стандартные приставки СИ к названию или обозначению единицы измерения «грамм» (которая в системе СИ сама является дольной: 1 г = 10−3 кг).
  6. Абсолютными называются системы, в которых в качестве основных единиц для механических величин приняты единицы длины, массы и времени.
  7. ↑ РМГ 29-99 Рекомендации по межгосударственной сертификации. Основные термины и определения.

В Викисловаре есть статья «измерение»

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Эталон

Это высокоточная мера, предназначенная для воспроизведения и хранения единицы величины с целью передачи её размера другим средствам измерений. От эталона единица величины передаётся разрядным эталонам, а от них – рабочим средствам измерений. Эталоны классифицируют на:

  • Первичный эталон – это эталон,  воспроизводящий единицу физической величины с наивысшей точностью, возможной в данной области измерений на современном уровне  научно-технических достижений. Первичный эталон может быть национальным (государственным) и международным.
  • Вторичные эталоны могут утверждаться либо Госстандартом РФ, либо государственными научными метрологическими центрами, что связано с особенностями их использования.
  • Рабочие эталоны воспринимают размер единицы от вторичных эталонов и в свою очередь служат для передачи размера менее точному рабочему эталону (или эталону более низкого разряда и рабочим средствам  измерений.

Презентация на тему Классификация видов средств измерений  

57

Методы измерений

Еще полезные статьи:

Области применения средств измерений

Согласно федеральному закону от 26.06.2008 № 102-ФЗ (ред. от 13.07.2015) «Об обеспечении единства измерений», сфера государственного регулирования в РФ распространяется на измерения, проводимые:

  • в здравоохранении;
  • в ветеринарии;
  • в области охраны окружающей среды;
  • в обеспечению безопасности при чрезвычайных ситуациях;
  • в охране труда;
  • в производственном контроле;
  • в торговле и расфасовке товаров;
  • выполнении государственных учётных операций;
  • на почте и электросвязи;
  • в осуществлении деятельности в области обороны и безопасности государства;
  • в геодезии и картографии;
  • в гидрометеорологии;
  • при проведении банковских, налоговых и таможенных операций;
  • в оценке соответствия;
  • в спорте;
  • в суде и др.;
  • в государственном контроле (надзоре);
  • в области атомной энергии;
  • в обеспечении безопасности дорожного движения;

Поверка и сертификация средств измерений

В Российской Федерации средства измерений используются для определения величин, единицы которых допущены в установленном порядке к применению в Российской Федерации и должны соответствовать условиям эксплуатации и установленным требованиям.

Решения об отнесении технического устройства к средствам измерений, внесении его в государственный реестр средств измерений, допущенных к использованию в Российской Федерации и об установлении интервалов между поверками принимает Федеральное агентство по техническому регулированию и метрологии.

На средство измерений утверждённого типа оформляется свидетельство (ранее — сертификат) об утверждении типа средств измерений.

Поверке подлежат только средства измерений, внесенные в государственный реестр средств измерений, допущенных к использованию в Российской Федерации. После процедуры поверки оформляется свидетельство о поверке. Остальные технические устройства подлежат калибровке. После процедуры калибровки оформляется сертификат калибровки.

Средство измерений так же может быть выбрано участниками измерений произвольно в тех случаях, когда средства измерений утверждённого типа недоступны или в них нет необходимости.

Основные правила использования и хранения измерительных инструментов

Расскажем, как правильно использовать и хранить измерительные инструменты, применяемые слесарями, слесарями-ремонтниками и мастерами иных профилей.

Эксплуатация контрольно-измерительных инструментов

1.      Все измерительные инструменты имеют инструкции по эксплуатации. Обязательно изучайте их перед использованием приспособлений и отправкой их на хранение.

2.      При фиксации инструментов не прилагайте слишком больших усилий. Это чревато не только ухудшением точности показаний, но и поломками приспособлений.

3.      Деталь или ее части перед измерениями должны быть очищены от различного рода загрязнений и заусенцев.

4.      Измерительные инструменты при необходимости нужно смазывать.

5.      После окончания работ приспособления должны быть очищены, смазаны и уложены в футляры.

6.      Необходимо оберегать изделия от влаги, падений и ударов.

7.      Измеряемые детали и изделия должны иметь температуру от +15 до +20 °С. В этом случае измерения будут максимально точными.

8.      Измерения обрабатываемых деталей проводится при выключенных станках.

9.      В промежутках между измерениями приспособления необходимо укладывать на сухие и чистые поверхности.

10. Эксплуатация измерительных инструментов требует регулярного проведения поверок.

Хранение измерительных инструментов

  1. Хранить измерительные инструменты необходимо в сухих и отапливаемых помещениях.

  2. Для защиты от негативных факторов желательно помещать приспособления в индивидуальные футляры и тубусы.

  3. Рекомендованная температура хранения — от +10 до +35 °С.

  4. В воздухе не должны содержаться агрессивные примеси.

  5. Перед отправкой на хранение измерительные поверхности разъединяют, а фиксаторы — ослабляют.


Фотография №22: хранение измерительных инструментов

Соблюдение вышеперечисленных правил помогает получить максимально точные результаты измерений и продлевает срок службы контрольных приспособлений.

Подтипы

Метод измерения путем сравнения может реализовываться разными способами:

  1. Противопоставлением. В этом случае искомый показатель и параметр, который воспроизводится мерой, действуют на прибор сравнения одновременно. В результате устанавливается соотношение между значениями.
  2. Дифференциацией. В этом случае искомый показатель сравнивается с известным значением, воспроизводимым мерой. Такой метод измерения применяется при установлении отклонения контролируемого диаметра заготовки на оптиметре после настройки его на 0.
  3. Совпадением. В этом случае между искомым показателем и значением, воспроизводимым мерой, устанавливается разность. Она определяется по совпадению отметок периодических сигналов или шкал.

Существуют и другие приемы. Например, нулевой метод измерения. Он предполагает доведения до 0 результирующего эффекта влияния параметров на прибор сравнения. Такой прием используется при измерении сопротивления по мостовой схеме с полным уравновешиванием. По способу получения информации исследования могут быть бесконтактными или контактными.

Классификация

Виды и методы измерений различаются, исходя из специфики зависимости исследуемого параметра от времени, типа формулы, условий, влияющих на точность. Существует также классификация по способам выражения результатов процесса. По характеру зависимости искомого параметра от времени выделяют динамическое и статистическое измерения. Последнее предполагается неизменяемость показателя. К таким измерениям относят определение размеров предмета, температуры, постоянного давления и так далее. Динамическими называют процессы нахождения значений, при которых искомый параметр изменяется во времени. К ним относят, например, установление показателя давления при сжатии газа. В зависимости от способа получения результатов различают совместные, косвенные, совокупные, прямые исследования. Рассмотрим их кратко.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий