Как подключить светодиод к 12 вольтам

Как подключить светодиод к 220в

Размерность сопротивления в данном случае расчитывается подобным образом.

Исходные данные те же. Светодиод потреблением 10 мА и напряжением 2.2 вольт.

Только напряжение питания в сети 220 вольт переменного тока.

Итак:

R = (Uпит.-Uпад.) / (I * 0,75)

R = (220 — 2.2) / (0,01 * 0,75) = 29040 Ом или 29,040 кОм

Ближайший по номиналу резистор стандартного значения 30 кОм.

Мощность считается по то й же формуле.

Для начала определяем фактический ток потребления:

I = U / (Rрез.+ Rсвет)

где:

Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

а из этого следует, что ток в цепи будет:

I = 220 / (30000 + 220) = 0,007 А

Таким образом реальное падение напряжения светодиода будет:

Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец мощность резистора:

P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59 Вт)

Мощность сопротивления должна быть не менее 1,59 Вт, лучше немного больше. Ближайшее большее стандартное значение 2 Вт.

Итак для подключения одного светодиода к напряжению 220 вольт, нам потребуется в электрическую цепь примостить резистор номиналом 30 кОм и мощностью 2 Вт.

НО! Так как в данном случае ток переменный, то светодиод буде гореть только в одну полуфазу то есть будет очень быстро мигать, приблизительно со скоростью 25 вспышек в секунду. Человеческий глаз это не воспринимает и будет казаться, что светик обычно горит. Но на самом деле он все равно будет пропускать обратные пробои, хоть и работает только в одном направлении. Для этого требуется поставить в цепь обратно направленный диод, дабы сбалансировать сеть и уберечь светодиод от преждевременного выхода из строя.

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение.

При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Подключение светодиода к сети 220 В — простейшие схемы

В данном разделе будем рассматривать схемы, которые можно самостоятельно и быстро воплотить в жизнь, для того, чтобы выполнить подключение светодиода к сети 220 В самостоятельно.

Подключение светодиода к 220 В с использованием резистора — схема

Выше вы можете видеть схему, которая используется повсеместно в цепях индикации. Т.е. если Вы разберете выключатель со светодиодной подсветкой, то обязательно увидите именно такую схему подключения светодиодов к сети 220 В. Такое соединение к 220 В у светодиода не только в выключателях. но и в индикации чайника, утюга и т.п. электротехнических устройствах. Мало того, что это самая простая схема подключения светодиодов к сети 220 В, так она еще и самая надежная.

Схема — подключение светодиода к сети 220 В при помощи резистора и диода

Для защиты светодиода используют схему подключения встречно-параллельного обычного диода.

Для чего в этой схеме надо использовать диод? А все просто… В проводящий полупериод на светодиоде напряжение снижается до 3В. В момент когда он заперт (непроводящий полупериод) к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого может достигать аж 310 В. А это, само-собой влечет возможность вывода из строя светодиод. Но… Если мы создадим путь протекания тока в непроводимый полупериод времени, то амплитуда обратного напряжения будет снижена. Именно для этого и применяется шунтирующий диод, показанный на схеме. В общем, если Вы хотите, чтобы Ваш светодиод при подключении к сети 220 В с резистором не погорел синем пламенем, используйте диод.

Схема — подключение светодиода к сети 220 В с диодом подключенным не встречно-параллельно

Существует возможность подключать ограничительный диод и не встречно-параллельно.

По сравнению с предыдущей схемой мы можем видеть, что ток протекает через резистор в 2 раза меньше. А это означает, что на нем выделится мощности ровно в 4 раза меньше.

Отрицательная сторона такого подключения светодиода к 220 В

К защитному диоду прикладывается ПОЛНОЕ напряжение сети, поэтому абы какой диод мы тут установить не можем. Для этого нам необходимо подобрать диод с обратным напряжением не менее 440 В — 1N4007.

Развенчаю домыслы многих радиолюбителей… В отрицательные полупериоды светодиод будет находиться в состоянии электрического пробоя! Но благодаря тому, что сопротивление p-n перехода защитного диода велико, тока будет недостаточно, чтобы вывести его из строя.

Электробезопасность при подключении светодиода к сети 220 В

Не забываем, что любая простая схема подключения светодиода к 220 В при прикосновении к ней человека может привести к негативным последствиям. Поэтому, дабы обезопасить себя и возможно детей от высокого напряжения необходимо поделить номинал резистора по полам и определить его на обе «линии».

Данное видоизменение используйте не только к такому типу подключения светодиодов, но и на ВСЕ схемы, где вы будете подключать светодиоды к сети 220 В без специальных устройств в виде драйвера.

Схема — подключение светодиода к сети 220 В при помощи аналогичного светодиода

Если подходящего диода нет, то подойдет и светодиод, с аналогичными характеристиками, для подключения его встречно-параллельно.

После того, как соберете данную схему, будет казаться, что в момент подключения оба светодиода будут светиться. Однако, это ошибочное представление, т.к. они мерцают с частотой в 50 Гц.

Светодиоды работают в противофазе. Когда первый работает, второй гаснет.

Здесь Вам стоит отметить следующее:

  1. Ток протекает через оба полупериода
  2. Ток протекает через резистор

Соответственно и номинал резистора стоит снизить вдвое.

Как проверить диод

Проверить диод можно обычным мультиметром – как пользоваться мультиметром в этой статье, для проверки переключаем тестер в режим прозвонки. Подключаем щупы прибора к электродам диода, черный щуп к катоду

 

(на корпусах современных диодах катод обозначен кольцевой меткой), красный щуп подключаем к аноду (как ты уже знаешь диод пропускают напряжение только в одну сторону) сопротивление диода будет маленьким т.е. цифры на приборе будут иметь  значение большое значение.  

Переключаем щупы прибора наоборот —

                                                                             сопротивление будет очень большим практически бесконечным. Если у тебя все получится так как я написал, диод исправен, если в обоих случаях сопротивление очень большое значит “диод  в обрыве” неисправен и не пропускает напряжение вообще, если сопротивление очень маленькое значит диод пробит и пропускает напряжение в обоих направлениях.

Полупроводниковый диод

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода.
Основная его функция — это проводить электрический ток в одном направлении,
и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.

На стыке соединения P и N образуется PN-переход (PN-junction).
Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод.
Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя.
То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы.
В части P находятся положительно заряженные ионы – дырки.
В результате, в том месте, где есть частицы с зарядами разных знаков,
возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки.
В итоге получается очень слабый электрический ток, измеряемый в наноамперах.
В результате, плотность вещества в P части повышается и возникает диффузия
(стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении.
Подключим источник питания — плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода.
Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода.
В результате, плотность вещества у электродов повышается.
В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток.
При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания — плюс к аноду, минус к катоду.
В таком положении, между зарядами одинаковой полярности возникает сила отталкивания.
Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь,
положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам.
PN переход обогащается заряженными частицами с разной полярностью,
между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода.
Под его действием электроны начинают дрейфовать на сторону P.
Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона).
Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

Чтобы не возникло путаницы, напомню,
что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток,
измеряемый в микро, или наноамперах ( в зависимости от модели прибора ).
В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде.
В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении.
Такое напряжение называется напряжение пробоя.
Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения Vϒ,
для того чтобы диод начал хорошо проводить ток.
Для кремниевых приборов Vϒ — это примерно 0.7V, а для германиевых — около 0.3V.
Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления.

Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора.

Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально.

Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном.

При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Распространенные ошибки при подключении

Самые часто встречающиеся ошибки при соединении светодиодов:

  1. Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
  2. Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
  3. Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
  4. Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
  5. Подключение напрямую к сети 220 В без защиты.

В какую сторону движутся электроны?

Современной теории об электричестве не под силу рассказать нам, в какую сторону течет ток. Представьте себе простую электронную схему, клемма батарейки – диод – лампочка – клемма батарейки. Я думаю, вряд ли кто-то из Вас видел в живую такую схему. Батарейку как отдельный элемент пока рассматривать не будем. Весь интерес состоит в том, что теперь, если мы установим диод между лампой и АКБ согласно современной физике, то лампочка не загорится, если же вопреки общепринятым законам, то она загорится.Официальная наука утверждает, что движение электронов происходит от минусовой клеммы к плюсовой, чем заморочили головы целых поколений, но против фактов никуда… Таким образом движение происходит от плюса к минусу.! Электрон — это отрицательно заряженная частица.! Диод — деталь, пропускающая положительное электричество в одном направлении.Если бы у нас была возможность протестировать, т.е. собрать цепь, в которой между минусом аккумулятора и лампочкой стоял бы диод, то схема не заработала бы, стоило нам переместить диод, чтобы он пропускал какую-то силу от плюса аккумуляторной батареи, вуаля, лампочка загорелась. К слову, сегодня все схемы современных электронных устройств читаются от плюса к минусу! Что входит в серьезное противоречие с теорией.Интересно, что нам скажет по этому поводу сама научная практика? А вот и ответ. Учебник «Основы электротехники»: «За направление электрического тока следовало бы считать направление движения свободных электронов по металлическому проводнику, однако за направление электрического тока условно принято считать направление движения положительных зарядов в проводнике. Эта условность сложилась исторически и в настоящее время сохранила свою силу в электротехнике». Вот что интересно, это слово «условно» употреблено не просто так, просто практика показывает, что движение происходит от плюса к минусу, а официальные лица отказываются признавать этот простой факт, почему? я опишу ниже. Более того таким тоном они пытаются как бы прировнять движение в одном направлении и в другом, они как бы равнозначны. Но о равнозначности здесь не может быть и речи, это не «Эзотерика», как вы сможете прочитать схему телевизора, не зная в какую сторону течет ток?Хорошо, как и обещал, идем дальше и представим, что электричество — это направленное движение электронов. Снова вернемся к нашему примеру, диод пропускает ток от плюса к минусу и схема работает, т.е. если верить физике, то электроны со знаком минус передвигаются от плюса к минусу. Вывод интересный и кажется абсолютной ерундой:! Тогда отрицательные заряды должны заранее находиться на плюсовой клемме.! Вряд ли такие заряды покинут плюсовую клемму, т.к. они же должны притягиваться.! Зачем эти электроны будут двигаться в сторону отрицательной клеммы, т.к. они должны отталкиваться друг от друга.Разобравшись с огромным количеством таких мелочей, которые как ком копятся у самых истоков науки, мы сможем открыть для себя новые горизонты.

Диодный мост

 Как работает диодный мост.                                                                                                         На следующем рисунке изображена принципиальная схема диодного моста

Обрати внимание, что на вход диодного моста подается переменный ток, на выходе уже получаем постоянный ток. Теперь давай разберемся как происходит преобразование переменного тока в постоянный.    

Если ты читал мою статью “Что такое переменный ток” ты должен помнить, что переменный ток меняет свое направление с определенной частотой. Проще говоря, на входных клеммах диодного моста, плюс с минусом будут меняться местами с частотой сети (в России эта частота составляет 50 Герц), значит (+) и (–) меняются местами 50 раз в секунду.                                                                                                                        Допустим в первом цикле на клемме “А” будет положительный потенциал (+) на клемме “Б”отрицательный (–) . Плюс от клеммы “А” может пройти только в одном направлении по красной стрелке, через диод “Д1” на выходную клемму со знаком (+)  и далее через резистор (R1)  через диод “Д3” на минус клеммы  “Б”.                                          В следующем цикле когда плюс и минус поменяются местами, все произойдет с точностью до наоборот. Плюс с клеммы “Б” через диод “Д2” пройдет на выходную клемму со знаком (+)  и далее через резистор (R1)  через диод “Д4” на минус клеммы “А”. Таким образом получаем на входе выпрямителя постоянный электрический ток который движется только в одном направлении от плюса к минусу (как в обычной батарейке). Этот способ преобразования переменного тока в постоянный используется во всех электронных устройствах которые питаются от электрической сети 220Вольт.                                                                                                                                   Кроме диодных мостов собранных из отдельных диодов применяют электронные компоненты в которых для удобства монтажа выпрямительные диоды заключены в один компактный корпус. Такое устройство называют “диодная сборка”.

Диоды бывают не только выпрямительные. Есть диоды проводимость которых зависит от освещенности их называют “фотодиоды”  обозначаются они так –

Выглядеть могут так —

Светодиоды, тебе хорошо известны, они встречаются и в елочной гирлянде и в мощных прожекторах и фарах автомобилей. Н схеме они обозначаются так –

Выглядят светодиоды так —

2.4. Гетеропереходы

В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон. Прямое падение напряжения на переходе Шоттки меньше, чем у типового электронно-дырочного перехода.
Так, что они питают электроэнергией и космические аппараты. Они имеют довольно небольшие размеры. Однако большой процент обратного тока является очевидным недостатком.
Как известно: ниже емкость — выше частота. В компьютерных блоках питания можно найти самые разные диодные сборки, единичных диодов тут почти не бывает — в одном корпусе два мощных диода, часто почти всегда с общим катодом.
Металл-полупроводник: принцип работы перехода Структура элемента Принцип работы диода Шоттки основан на особенностях барьера. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. Сегодня диоды Шоттки типа 25CTQ на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.
Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. При любом из этих состояний ИБП блокируется благодаря встроенной схеме защиты. В первом случае все вторичные напряжения отсутствуют. Поэтому, сборку или отдельный элемент необходимо сначала демонтировать из схемы для проверки.


При идентичных параметрах собранных таким образом элементов обеспечивается надежность работы всего устройства, в первую очередь, за счет единой температуры. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием единицы наносекунд — несомненные преимущества диодов Шоттки перед p-n-собратьями. Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции. Особенности и принцип работы диода Шоттки Как работает диод Шоттки?

На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя.

В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. При более высоком значении они ведут себя как обычные диоды. Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона: Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника.
Обзор диодов шоттки с общим анодом и общим катодом. Тест транзистора 13007

Как правильно подключать светодиоды

Параллельное подключение

Вообще параллельное соединение не рекомендуется. Даже у одинаковых диодов параметры номинального тока могут различаться на 10-20%. В такой цепи диод с меньшим номинальным током будет перегреваться, что сократит срок его службы.

Проще всего определить совместимость диодов при помощи низковольтного либо регулируемого источника питания. Ориентироваться можно по «напряжению розжига», когда кристалл начинает лишь чуть светиться. При разбросе «стартового» напряжения в 0,3-0,5 В параллельное соединение без токоограничивающего резистора недопустимо.

Последовательное подключение

Расчёт сопротивления для цепи из нескольких диодов: R = (Uпит — N * Uсд) / I * 0.75

Максимальное количество последовательных диодов: N = (Uпит * 0,75) / Uсд

При включении нескольких последовательных цепочек LED, для каждой цепи желательно рассчитать свой резистор.

Как включить светодиод в сеть переменного тока

Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется.

При прохождении положительной полуволны, ток, пройдя через резистор, гасящий избыточную мощность, зажжёт источник света. Отрицательная полуволна будет идти через закрытый диод. У светодиодов обратное напряжение небольшое, около 20В, а амплитудное напряжение сети – около 320 В.

Какое-то время полупроводник будет работать в таком режиме, но в любой момент возможен обратный пробой кристалла. Чтобы этого избежать перед источником света устанавливают обыкновенный выпрямительный диод, выдерживающий обратный ток до 1000 В. Он не будет пропускать обратную полуволну в электрическую цепь.

Схема подключения в сеть переменного тока на рисунке справа.

Как определить полярность светодиода

Полярность светодиода можно определить тремя способами:

  1. У традиционного светодиода, длинная ножка (анод) является ПЛЮСом. А короткая (катод) соответственно МИНУСом. На пластиковом основании (головке) светодиода есть срез, он обозначает расположение катода или минуса.
  2. Присмотритесь внутрь светика. Контакт в виде флажка — минус. Тонкий контакт — плюс.
  3. Используйте мультиметр. Установите центральный переключатель в режим «прозвонки». Щупами прикоснитесь к контактам проверяемого светодиода. Если светодиод засветится — тогда красный щуп прижат к плюсу светодиода а черный, соответственно к минусу.

N.B. Хотя на практике последний способ иногда не подтверждается.

Номинальное напряжение для большинства светодиодов 2,2 — 3 вольта. Светодиодные ленты и модули, которые работают от 12 и более вольт, уже содержат в схеме резисторы.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий