Расход электроэнергии

Индукционные модификации

В индукционных моделях применяют инновационные технологии. Такие плиты нагревают не материал термоэлемента, а дно емкости, от которого температура переходит на рабочую поверхность конфорки. Это более мощные и дорогие устройства, чем классические плиты. Но при их правильном использовании можно экономить электричество потому, что они быстро разогреваются и автоматически отключаются, когда с конфорки снимают блюдо. На них можно использовать специальную посуду, исключающую теплопотери. Процесс готовки на таких плитах происходит быстрее.

Обычно индукционные модели имеют две конфорки по 16 см, каждая из которых потребляет 1,5 кВт. Средняя конфорка диаметром 18 см, ее мощность — 2 кВт. Диаметр большой конфорки — 23 см, она потребляет 2 кВт. Общая сумма составляет 7 кВт. Такой расход электроэнергии происходит, когда работают одновременно все конфорки на максимальном режиме. Это случается редко. Чаще всего пользователи используют две маленькие конфорки, не доводя их до максимума, а выставляют при готовке значения от 6 до 8, при разогреве — от 3 до 5. Что существенно сокращает расход электроэнергии.

Определение максимальных мощностей потребителей

Определяем мощность нагрузки подстанции

Sпс= •U•(2•IэА•0,65•IэВ)•0,83•КМ ;кВА (2.1)

где, U— номинальное выпрямленное напряжение на шинах подстанции, кВ,

U = 10кВ;

IэА и IэВ-эффективные токи подстанции, А;

КМ — коэффициент, учитывающий влияние внутри суточной неравномерности движения, КМ=1,45.

Sпс= 10•(2•470+0,65•540)•0,83•1,45 = 15537,18 кВА

Максимальную активную мощность потребителей определяем по формуле

Pmax=Py•Kc, кВт (2.2)

где, Py— установленная мощность потребителей электроэнергии, кВт;

Кс — коэффициент спроса, учитывающий режим работы, загрузку и к.п.доборудования.

Потребитель №1

Pmax1=Py1• Кс1 = 1400• 0,55 = 770кВт

Потребитель №2

Pmax2 = Py2•Кc2= 1300 • 0,5 = 650 кВТ

Потребитель №3

Рmах3 = Руз•К = 1600 • 0,51 = 816 кВт

Потребитель №4

Рmах4 = Ру4 •КС4 = 1500 • 0,52 = 780 кВт

Определяем реактивную мощность потребителей

Q = Pmax•tgц кВар (2.3)

где tgц определяется по известному значению cosц.

Pmax — активная мощность потребителя.

Потребитель №1

Q1= Pmax1•tgц1 =770•0,48 = 369,6 кВар

Потребитель №2

Q2max2•tgц2 = 650 • 0,62 = 403 кВар

Потребитель №3

Q3 = Рmах3•tgц3= 816• 0,54 = 440,64 кВар

Потребитель №4

Q4= Рmах4•tgц4= 780 • 0,57 = 444,6 кВар

Определяем активную суммарную нагрузку

  • max = Рmах1 + Рmаx2 + РmахЗ + Рmах4,+ Рmах5, кВт (2.4)
  • ?Pmax= 770 + 650 + 816 + 780 = 3016 кВт

Определяем суммарную реактивную мощность потребителей

  • ?Qmax = Q1 + Q2 + Q3 + Q4 + Q5, кВар (2.5)
  • ?Qmax = 369,6 + 403 + 440,64 + 444,6 = 1657,84 кВар

На основании полученных максимальных мощностей и заданных типовых графиков нагрузки вычисляем активные мощности каждого потребителя для каждого часа суток по формуле

кВт, (2.6)

где pn — число процентов из типового графика для n — го часа;

100 — переводной коэффициент из процентов в относительные единицы.

Данные расчета активной нагрузки по часам суток для каждого потребителя сводим в таблицу 2.1

Таблица 2.1 Расчет активной нагрузки потребителей

Часы

Активная нагрузка, кВт

Суммарная

Потребитель1

Потребитель2

Потребитель3

Потребитель4

1

2

3

4

5

6

  • 0(24)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 268,8
  • 231
  • 268,8
  • 191,7
  • 169,4
  • 215,6
  • 292,6
  • 268,7
  • 600,6
  • 730,7
  • 693
  • 600,6
  • 422,7
  • 693
  • 770
  • 576,7
  • 576,7
  • 653,7
  • 499,7
  • 422,7
  • 385
  • 422,7
  • 191,7
  • 154
  • 226,9
  • 195
  • 226,9
  • 161,8
  • 143
  • 182
  • 247
  • 226,8
  • 507
  • 616,8
  • 585
  • 507
  • 356,8
  • 585
  • 650
  • 486,8
  • 486,8
  • 551,8
  • 421,8
  • 356,8
  • 325
  • 356,8
  • 161,8
  • 130
  • 284,9
  • 244,8
  • 284,9
  • 203,1
  • 179,5
  • 228,4
  • 310,08
  • 284,7
  • 636,4
  • 774,3
  • 734,4
  • 636,4
  • 447,9
  • 734,4
  • 816
  • 611,1
  • 611,1
  • 692,7
  • 529,5
  • 447,9
  • 408
  • 447,9
  • 203,1
  • 163,2
  • 272,3
  • 234
  • 272,3
  • 194,2
  • 171,6
  • 218,4
  • 296,4
  • 272,3
  • 608,4
  • 740,2
  • 702
  • 608,4
  • 428,2
  • 702
  • 780
  • 584,2
  • 584,2
  • 662,2
  • 506,2
  • 428,2
  • 390
  • 428,2
  • 194,2
  • 156
  • 1052,9
  • 904,8
  • 1052,9
  • 750,8
  • 663,5
  • 844,4
  • 1146,08
  • 1052,5
  • 2352,4
  • 2862
  • 2714,4
  • 2352,4
  • 1655,6
  • 2714,4
  • 3016
  • 2258,8
  • 2258,8
  • 2540,4
  • 1957,2
  • 1655,6
  • 1508
  • 1655,6
  • 750,8
  • 603,2

На основании данных таблицы 2.1 строим график суммарной нагрузки потребителей рис.2.1.

Механическая мощность

Механическая мощность не имеет отношения к электричеству. Здесь суть заключается в том, что работа выполняется под действием определённой силы. В основном это сила внешнего воздействия. Так, механическая мощность — это работа, выполняемая в единицу времени.

Например, кран поднимает тяжёлый груз. Для этого он прикладывает силу, которая по модулю больше, чем гравитационная сила. Давайте разберём два возможных случая расчёта:

  1. Груз поднимается с одинаковой скоростью.
  2. Груз поднимается с ускорением, равным 1 метру, делённым на секунду в квадрате.

Работа — это произведение силы и расстояния, на которое был перемещён объект под действием этой силы.

Предположим, что масса груза равна 50 килограмм. Так как груз движется с постоянной скоростью, его сила тяжести равна 500 ньютон. Кран поднял груз на высоту 100 метров. Соответственно, работа, которую совершил кран, равна произведению пятисот ньютон и ста метров. Получаем результат, равный 50 тыс. Джоулей.

Предположим, что кран осуществлял работу по подъёму груза в течение 50 секунд. Для расчёта его мощности разделим 50 тыс. джоулей на время, равное пятидесяти секундам, и получим 1 тыс. Джоулей. Так, за одну секунду кран тратил 1 тыс. джоулей энергии для совершения работы, а значит, его мощность равна 1 тыс. Ватт.

Давайте теперь рассмотрим случай, в котором груз поднимается с ускорением 1 метр, делённый на секунду в квадрате. В таком случае груз будет доставлен в точку назначения примерно за 13 секунд.

Для перемещения груза с таким ускорением, крану необходимо прикладывать силу, равную 550 ньютон. Перемножим значение этой силы на 100 метров. Получим 55 тыс. Джоулей. Это энергия, которую израсходовал кран для поднятия этого груза с ускорением на высоту 100 метров. Далее, разделим 55 тыс. Джоулей на 13 секунд и получим примерно 4200 Джоулей секунду. В случае с ускорением мощность работы крана составила 4200 Ватт.

При движении с ускорением кран выполняет работу гораздо быстрее. Соответственно, эффективность труда становится гораздо выше. Именно механическая мощность и является показателем этой эффективности.

Прямое измерение тока

Методы той группы отличаются более высокой точностью за счет того, что основаны на прямом измерении тока. Существуют два прибора для выполнения этой процедуры в бытовых условиях.

Замер токовыми клещами

Наиболее удобны для использования токовые клещи, которые не требуют разрыва контролируемой цепи. Выполнены как ручное устройство с измерительным узлом на основе тороидального сердечника. Для замера тока узел раскрывают на манер губок клещей, после чего закрывают с охватом провода, рисунок 3. Действующее значение тока находится по изменению магнитного поля, которое фиксируется датчиком Холла.


Рис. 3. Измерение токовыми клещами

Замер тестером

Второй способ основан на применении тестера, который переключают в режим амперметра и включают в разрыв цепи. Сложности реализации этой процедуры простыми средствами делают его мало популярным на практике. Нельзя сбрасывать со счетов также то, что некоторые модели тестеров не имеют токовой защиты и выходят из строя (сгорают) при неправильном выборе диапазона (токовой перегрузке).

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации. Подсчет потребляемой мощности

Подсчет потребляемой мощности

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

https://youtube.com/watch?v=dwaSF3W4TxU

Показатели мощности духовых шкафов

Мощность электрического духового шкафа измеряется в основных единицах — Ваттах (сокращенно Вт) и чаще производных — киловаттах (кВт). Среднее количество энергии, потребляемое бытовыми приборами, измеряется с помощью электрических счетчиков.

Встраиваемый электрический духовой шкаф потребляет от 0,6 до 3,65 кВт. Средняя мощность электрической духовки составляет примерно 1,6 кВт.

Что такое присоединительная мощность

Эта характеристика включает мощность, потребляемую всеми нагревательными элементами, вентиляторами, лампой подсветки и электронным блоком управления.

Духовки обычно используются вместе с варочными панелями (электро– или газовыми приборами) или автономно.

Информация о присоединительной мощности встраиваемого духового электрического шкафа, параметрах электропроводки и автоматов защиты, требуемых для подключения, приведена в таблице ниже:

Вид техникиНапряжение сети, ВМаксимальная потребляемая мощность, кВтСечение медного кабеля для однофазного подключенияСечение медного кабеля для трехфазного подключенияПараметры автомата защиты
Духовой шкаф + электрическая варочная панель220/380Не более 11До 8,3 кВт/4 мм2, кабель ПВС 3х4

8,3–11 кВт/6 мм2, кабель ПВС 3х6

До 9 кВт/2,5 мм2, кабель ПВС 3х2,5

9–15 кВт/4 мм2, кабель ПВС 3х4

Отдельный не менее 25А/32А/40А УЗО
Электрическая варочная панель220/3806–11До 8,3 кВт/4 мм2, кабель ПВС 3х4

8,3–11 кВт/6 мм2, кабель ПВС 3х6

До 9 кВт/2,5 мм2, кабель ПВС 3х2,5

9–11 кВт/4 мм2, кабель ПВС 3х4

Отдельный не менее 25А/32А/40А УЗО
Духовой шкаф2203,5–6До 4 кВт/2,5 мм2, кабель ПВС 3х2,5

4–6 кВт/4 мм2, кабель ПВС 3х4

До 4 кВт/2,5 мм2, кабель ПВС 3х2,5

4–6 кВт/4 мм2, кабель ПВС 3х4

16А, 25А
Газовая варочная панель220Не более 31,5 мм2, кабель ПВС 3х1,51,5 мм2, кабель ПВС 3х1,516А

УЗО — устройство защитного отключения. Оно представляет собой быстродействующее средство защиты человека от воздействия электрического тока и возгорания электропроводки при возникновении неисправностей в ней или подключенных электроприборах.

УЗО сравнивает показатели тока, поступающий к потребителю электричества, с током, возвращающимся от него. Если они не равны, устройство отключает подачу напряжения потребителю. Устанавливается УЗО в распределительном щите поблизости от электрического счетчика.

Трансформаторные подстанции

Схемы первичных соединений трансформаторной подстанции определяются категорией потребителей и мощностью трансформаторов (Тр). На рис. 1а приведена схема трансформаторной подстанции в однолинейном изображении, без сборных шин на стороне высшего напряжения (6 или 10 кВ), с трансформатором мощностью до 100 кВ·А, при радиальном питании, применяемая обычно для питания нагрузок III и, реже, II категории. Включают и отключают трансформатор выключателем нагрузки 2, защита от токов короткого замыкания выполнена в виде плавких предохранителей 3. На стороне низшего напряжения (380 В) трансформатора защита от перегрузки осуществляется воздушным автоматическим выключателем максимального тока 4. Питание потребителям подается через сборные шины низшего напряжения 6. Защита отходящих кабелей 8 низшего напряжения выполнена в виде плавких предохранителей 3; отключение осуществляют рубильником 7. В последнее время рубильник и плавкие предохранители часто заменяют воздушным автоматическим выключателем (автоматом) максимального тока, выполняющим функции включения/отключения и защиты от перегрузки и короткого замыкания. Трансформатор тока 5 служит для питания цепей измерения (счетчика киловатт-часов и амперметра).

Рис. 1. Однолинейные схемы трансформаторной подстанции до 1000 кВ•А: а — для потребителей III и II категории; б — для потребителей II и I категории

Для питания потребителей I и II категорий используется так называемая двухлучевая трансформаторная подстанция (рис. 1б). Питание на подстанцию поступает по двум кабельным вводам 1 от двух различных источников напряжением 6-10 кВ. Оперативное переключение и защита трансформаторов Т рпроизводится соответственно при помощи выключателей мощности 9. Установка на стороне низшего напряжения автоматических выключателей 10, выключателей мощности на стороне высшего напряжения 9 и межсекционного автомата 11 позволяет осуществить, кроме защиты от перегрузки и короткого замыкания, автоматическое включение резерва (АВР), обусловленное правилами устройства электроустановок (ПУЭ) для потребителей I категории. Резервное питание включается автоматически после аварийного отключения одного из питающих вводов (АВР на стороне высшего напряжения 6-10 кВ) или одного из питающих трансформаторов (АВР на стороне низшего напряжения 380 В). Перерыв в подаче энергии при АВР не превышает 1 с, что практически не нарушает нормальной работы большинства потребителей. Трансформаторы тока 13 и трансформаторы напряжения 12 служат для питания цепей измерения и защиты на стороне напряжения 6-10 кВ.

Вторичная обмотка понижающего трансформатора соединяется звездой с выведенной и заземленной нулевой точкой. На междуфазное (линейное) напряжение 380 В включается силовая нагрузка — в основном преобразователи электроприводов, двигатели трехфазного тока и др.; на фазное напряжение 220 В включаются осветительные устройства. Таким образом, применение четырехпроводной системы с линейным напряжением 380 В обусловливает совместное питание силовой и осветительных нагрузок.

В последнее время на крупных полиграфических предприятиях получили распространение внутрицеховые комплектные трансформаторные подстанции (КТП) с высшим первичным напряжением 6-10 кВ и низшим 380 В, с сухими (без маслозаполнения) трансформаторами мощностью до 1000 кВ·А. В состав КТП входят силовой трансформатор на 630 или 1000 кВ·А, коммутационная защитная и измерительная аппаратура и фидерные аппараты. Коммутационная аппаратура высшего напряжения и автоматы, размещенные в стальных ячейках, имеют втычные контакты и приспособления для выключения автоматов при открывании дверей.

Энергопотребление электрических полотенцесушителей для ванной комнаты

Электрический полотенцесушитель обеспечивает качественную сушку белья, обогревает ванную комнату, предотвращает появление болезнетворных грибков и плесени в помещении.

Благодаря подключению к электросети, полотенцесушитель не зависит от наличия горячего водоснабжения или отопления, поэтому способен работать круглогодично.

Потребление электроэнергии напрямую зависит от материала, размера, особенностей конструкции. Чтобы поддерживать комфортную температуру (22–25 °C), оборудование рекомендуется подбирать исходя из параметров помещения.

Справка! Прибор, используемый для отопления помещения и сушки белья, должен быть не меньше 140 Вт/м², а изделие, которое приобретается только для сушки белья — 35 Вт/м².

Если установить прибор меньшей мощности, то воздух в помещении не нагреется до установленной нормы, а расход электричества будет неоправданным, так как оборудование не выполнит своих функций.

Наиболее популярными по типу устройства являются кабельные и масляные полотенцесушители. Масляным приборам требуется достаточно много времени на разогрев. Сначала нагревательный элемент разогревает масло, и только потом тепло передаётся стенкам прибора. Мощность масляных полотенцесушителей варьируется от 300 до 1000 Вт. Кабельные изделия нагреваются значительно быстрее (5–10 минут), но обладают малой мощностью: 30–150 Вт.

Важно! Кабельные полотенцесушители не предназначены для обогрева помещения. Их основное назначение – просушивание белья и полотенец

Смотрим в паспорт

Первый способ — посмотреть в паспорт электроприбора. Все фабричные агрегаты снабжаются этикеткой на корпусе, инструкцией и паспортом с гарантией. В данных книжечках указывается сфера применения, условия эксплуатации, и технические данные.

Выше представлен небольшой фрагмент паспортных данных, вернее таблицы с данными модельного ряда конвекторных нагревателей. В столбце №1 указывается ток, проходящий через устройство, во втором столбце указано, сколько потребляет электроэнергии прибор при включении одного ТЭНа и двух. Вот на примере обогревателя с помощью паспорта можно запросто узнать потребляемую мощность аппарата. Аналогичным образом можно определить, сколько потребляет телевизор или даже светодиодная лампа.

Формулы вычисления мощностей

Для расчета установленной мощности электроустановки можно взять наглядный пример осветительной установки.

Осветительная установка

Установленная мощность ( ) вычисляется во время выбора ламп и по итогам технических расчетов. Для этого складываются мощности всех ламп накаливания в системе, и формула выглядит следующим образом:

, где  – номинальные мощности ламп накаливания,  – та же базовая величина для люминесцентных ламп с низким давлением,  – мощность дуговых ламп (ртутных, низкого давления).

По разным причинам, часть осветительных элементов может не работать. В этом случае расчетная мощность ( ) – это произведение установленного значения ( ) и коэффициента спроса, который рассчитывается по формуле:

=, где  – активная мощность за 30 минут работы системы. Тогда = .

Важно! Определение установленной и расчетной мощностей имеет важное значение для многих отраслей промышленности и энергетического комплекса. Расчеты этих величин используют при проектировании осветительных установок, организации электроснабжения в жилых домах, городского освещения и в других областях, которые нуждаются в обеспечении электричеством

Электротехническое оборудование

Знание установленных и расчетных значений мощностей позволяет вычислить допустимые нагрузки, которым будет подвергаться эксплуатируемое электротехническое оборудование, что позволит использовать его с максимальной эффективностью.

Расчетная мощность для промышленных объектов

Реактивная мощность

Расчетная мощность промышленного предприятия зависит от:

  • типа продукции;
  • используемых технологий;
  • ожидаемой максимальной нагрузки в течение года;
  • типа выпускаемой продукции;
  • типа оборудования и степени его адаптации к технологии.

Существует множество методов расчета, все они должны обладать общими свойствами:

  • простотой вычисления;
  • универсальностью в определении нагрузок для разных уровней потребления и распределения энергии;
  • точностью результатов;
  • легкостью определения показателей, на которых основан метод.

Основные показатели рассчитываются по тем же формулам, но с другими поправочными коэффициентами.


Коэффициенты спроса для СН подстанции

Для трехфазных электромоторов установленная мощность равна:

Р = Рн/(η х cos φ), где:

  • Рн – номинальный мощностной показатель из техпаспорта;
  • η – КПД электромотора;
  • cos φ – мощностной коэффициент.

Увеличение выделенной, согласно техусловиям, мощности необходимо согласовывать с энергоснабжающей организацией. С этой целью проводятся перерасчеты для вводных кабелей и приборов защиты на основе новой установленной мощности. Но решение о выделении зависит от наличия свободных мощностей.

Что это такое

При капитальном строительстве времен СССР, например в хрущевках, т.е. в большей части жилых помещений эксплуатируемых и по сей день еще на этапе проектировки выделенная мощность была по норме 1,5 кВт на 1 квартиру. Позже установленная норма электроэнергии выросла до 3 кВт, поскольку возникла необходимость её увеличить в связи с возросшей «прожорливостью» потребителей. Практика показывает, что в электрощитах и счетчиках обычно устанавливались пробки по 10-16 Ампер, так чтобы максимальный ток потребляемой квартирой был ограничен общей мощностью электроэнергии в 3 кВт для квартир с газовой плитой. Для квартир, где установлена электроплита, выделяется 7 кВт. В новостройках выделенная мощность может доходить и до 15 кВт. Такой разброс вызван тем, что во времена строительства старых домов (60-е, 70-е) просто не было таких мощных потребителей и такого количества бытовой техники как сейчас.

Выделенная мощность – это максимальное количество потребляемой электроэнергии в один момент времени.

Кроме того, чтобы войти в установленный лимит, иногда нужно сделать ввод не 1 фазы, как зачастую и бывает, а целых 3 фазы. Это необходимо для подключения современной бытовой техники, например мощных элетрокотлов и электроплит. Особенно актуально это в коммерческих помещениях и производствах любого масштаба, где нужно много электроэнергии (до 30 кВт и выше).

Пример. Для отопления загородного дома не оборудованого газовым оборудованием устанавливают твердотопливные и электрокотлы, последние безопаснее и удобнее. Для отопления дома площадью в 100 кв.м. нужен котел мощностью около 7-10 кВт, электроплита потребляет еще порядка 3-5 кВт. Итого необходимо увеличить установленный предел электроэнергии до 15 кВт минимум и ввод электроэнергии по трём фазам.

Чтобы узнать выделенную мощность на частный дом или квартиру, нужно обратиться в эксплуатирующую организацию (в Москве и области – это ОАО «Мосэнергосбыт»). Справка содержит информацию о выделенной и средней потребляемой мощности электроэнергии. Она будет нужна, если вы оформляете документы на увеличение, об этом будет подробно ниже.

Способы экономии потребляемой энергии

Полотенцесушители с терморегуляторами удобны тем, что могут настраиваться на любой температурный режим работы. Нагрев регулируется от 30 до 70 °C.

Если в помещении и так жарко, температуру можно выставить на самый низкий режим, если холодно — на самый высокий. Благодаря возможности самостоятельно регулировать температурный режим, существенно сокращаются расходы электроэнергии.

Некоторые модели оснащены датчиками, определяющими температуру и помогающими её поддерживать, и таймером автоматического отключения при истечении установленного времени. Например, если стоит цель только просушить полотенца, таймер выставляется на определённое время, и прибор отключается сам (охлаждается), а, следовательно, перестаёт потреблять электроэнергию.

Расчёт мощности и потребления электроэнергии — сколько потребляет в месяц

Чтобы рассчитать, сколько электроэнергии потребит полотенцесушитель за месяц, необходимо знать его мощность (указано посмотреть в паспорте устройства), время работы за день, и тариф на электроэнергию.

Внимание! В описании товара обычно даётся максимальная потребляемая мощность, поэтому реальный расход будет ниже. Формула для расчёта расхода электроэнергии в денежном эквиваленте: мощность прибора умножить на количество часов его работы в день, полученную сумму умножаем на количество дней в месяце, полученное число умножить на тариф электроэнергии

Формула для расчёта расхода электроэнергии в денежном эквиваленте: мощность прибора умножить на количество часов его работы в день, полученную сумму умножаем на количество дней в месяце, полученное число умножить на тариф электроэнергии.

Например: мощность кабельного полотенцесушителя 45 Вт, он работает ежедневно в течение 31 дня по 5 часов. Стоимость 1 Вт по тарифу 5 рублей.

45(Вт)х5(часов)х31(день)х5(рублей)=34,9 руб/мес.

Фото 1. Рациональным решением будет приобрести подобную модель с терморегулятором, который позволяет снижать или повышать температуру самостоятельно в зависимости от конкретных потребностей.

Среди электрических полотенцесушителей популярны модели: Energy U chrome G3 мощностью 54 Вт, Energy Ergo 800х500 — 75 Вт, из масляных пользуется спросом Terma Pola 780х500 с мощностью 400 Вт.

Какие элементы машинки потребляют электроэнергию

Чтобы определить мощность агрегата, для начала необходимо выяснить, какие элементы прибора «съедают» большую часть электричества. К ним относятся:

  1. Электронагреватель (ТЭН) предназначен для нагрева воды в баке. Интенсивность его работы зависит от выбранной программы и этапа стирки. Если для режима кипячения ТЭН работает в полную мощность, то при стирке в холодной воде он может вовсе не включаться за все время процесса. Любой нагреватель, встроенный в машинку, имеет свой показатель мощности, который варьируется в пределах 1,7-2,9 кВт. Чем выше указанное число, тем быстрее нагревается вода и больше энергии расходуется при работе.
  2. Двигатель – основной элемент машинки, обеспечивающий вращение барабана. В современных моделях устанавливаются разные виды моторов – асинхронные, инверторные или коллекторные. Мощность двигателя стиральной машины зависит от его типа. В среднем показатель варьируется от 0,4 до 0,8 кВт (400-800 Ватт). Больше всего энергии расходуется на этапе отжима.
  3. Блок управления – система деталей, позволяющая контролировать процессы агрегата. К ним относятся электронная плата, датчики, программатор, лампочки, пусковые конденсаторы и другие элементы, связанные с управлением. Вся система потребляет около 5-10 Ватт.
  4. Помпа (насос) задействован на разных этапах работы машинки, когда необходимо откачать использованную воду из бака. Для выполнения своей функции деталь расходует немного электроэнергии – от 25 до 45 Ватт.

Расход электроэнергии определяется выбранной программой стирки. Каждый из режимов рассчитан на определенную температуру нагрева воды, длительность и интенсивность цикла, количество оборотов барабана во время обычной стирки и на этапе отжима. Влияние на потребление энергии оказывает вес загружаемой одежды и тип ткани, а также выбранные дополнительные функции – полоскание, сушка, легкая глажка и др.

Количество потребляемой электроэнергии также зависит от выбранной программы и ее продолжительности

Немаловажный фактор – срок службы прибора. Со временем ТЭН накапливает солевой налет, который затрудняет теплоотдачу. Чтобы нагреть воду до нужной температуры, нагревателю приходится «трудиться» сильнее, соответственно, требуется больше электроэнергии.

Расчетная мощность общественных зданий

  1. В целом для общественных зданий применяется формула:

Р = Ргр х k x а, где:

  • Ргр – установленная мощность группы приемников в кВт,
  • k – коэффициент одновременности для этой группы,
  • a – коэффициент использования номинальной мощности для данной группы приемников.

Оба коэффициента находятся в специальных таблицах.

  1. С учетом фактора спроса на электроэнергию используется другое выражение:

Р = Kс х Ргр, где Kc – коэффициент спроса (определяется по таблице).

Величина Кс для нежилых объектов колеблется от 0,2-0,4 до 1.

В методе коэффициента спроса расчетная нагрузка не зависит только от количества установленных приемников. Это связано с различными коэффициентами спроса. Для больших объектов с множеством разнообразного оборудования следует принимать меньшие значения Кс.

В непромышленных зданиях: офисах, школах, больницах, театрах, гостиницах и т. д., где доминируют осветительные приемники и нагревательные устройства, предполагают, что cos φ = 1.

Расчетная мощность здания коммунального хозяйства (котельные, насосные станции) должна определяться на основе данных каталога изготовителей электрических устройств, планируемых к установке, в соответствии со следующими формулами:

  1. реактивная мощность одного приемника:

Q1 = tg φ х Р1.

  1. для группы:

Q = Кс х Qгр, где:

  • для Qгр складываются все вычисленные значения отдельных приемников,
  • Кс – коэффициент спроса.
  1. активный мощностной показатель для группы:

Р = Kс х Ргр.

  1. общая мощность:

S = √(Р² + Q²).

Важно!

Исходя из приведенных значений мощностей, вычисляется tg φ для группы: tg φ = Q/P. Если его значение больше указанного в технических условиях для подключения, принимается решение о компенсации реактивной мощности.

Для трансформаторной подстанции, с которой будут питаться жилые и коммунальные здания, расчетная мощность определяется:

S =√(P² + Рз² + Рос²) + (Q² + Qз² + Qос²), где:

  • P и Q – показатели для зданий коммунального хозяйства;
  • Рз и Qз – для жилых зданий;
  • Рос и Qос – для установок уличного освещения.
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий