Активная реактивная и полная мощность

Реактивный коэффициент

По-другому он называется коэффициентом мощности и является безразмерной величиной, вводимой для вычисления реактивной составляющей. Говоря научным языком, он показывает, насколько сдвигается фаза переменного тока, протекающего через нагрузку, от возникшего на ней напряжения. Численно он принимается равным косинусу сдвига. Математически это сдвиг интерпретируется как косинус угла между векторными значениями тока и напряжения.

Простыми же словами, коэффициент мощности, обозначаемый φ, указывает на ту часть расходуемой электроэнергии, которая преобразуется в полезную работу. Например, при cos φ = 0,9 девяносто процентов от полной энергии уйдёт на совершение полезного действия, а остальные десять будут считаться потерями. Поэтому если в паспорте на какой-либо прибор указано, что мощность изделия составляет 500 Вт, а cos φ = 0,5, то полный расход его энергии будет составлять 500/0,5 = 250 ВА.

То есть коэффициент φ находится из отношения потребляемой устройством энергии к значению полной мощности. Нередко в паспорте оборудования указывается и составляющая φ (характер нагрузки). Она может быть резистивно-ёмкостной или резистивно-индуктивной. При этом сам коэффициент соответственно является опережающим или отстающим.

Если же напряжение в цепи изменяется по синусоидальному закону, а ток по несинусоидальному, то нагрузка никакой реактивной составляющей иметь не будет, а коэффициент принимается равным главной волне (первой гармонике). Под несинусоидальными понимаются искажения электрического сигнала, связанные с гармониками, преобладающими над основной частотой.

В математике формулой для нахождения коэффициента мощности является выражение: cos φ= P/S. Поэтому чем больше его значение, тем меньше потребляет устройство энергию из сети. Существуют различные способы поднятия значения cos φ, даже до максимального значения, равного единице, называемые коррекцией. Наиболее эффективным является добавление в схему сложного электронного узла, размещаемого на входе устройства.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

I=U/(R1+R2)=12/(10+10)=12/20=0,6

Общая мощность:

P=UI=12*0,6=7,2 Ватт

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

U=IR=0,6*10=6 Вольт

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

I1=U/R1=12/1=12 Ампер

I2=U/R2=12/2=6 Ампер

И выделяется на каждом по:

PR1=12*6=72 Ватта

PR2=12*12=144 Ватта

Выделяется всего:

P=UI=12*(6+12)=216 Ватт

Или через общее сопротивление, тогда:

Rобщее=(R1*R2)/( R1+R2)=(1*2)/(1+2)=2/3=0,66 Ом

I=12/0,66=18 Ампер

P=12*18=216 Ватт

Все расчёты совпали, значит найденные значения верны.

Преимущества автоматических установок компенсации реактивной мощности:

За счет внедрения автоматических конденсаторных и дроссельных установок на проектируемые и модернизируемые объекты можно добиться следующих результатов:

– снижение уровня энергопотребления до 40%,

– уменьшение нагрузки на силовых трансформаторах, что сказывается на долговечности их эксплуатации,

– уменьшение нагрузки на кабельные и проводные линии, что позволит использовать провода с меньшим сечением,

– убрать лишние наводки и гармоники в питающих электросетях, улучшить качество транспортируемого по ним электричества,

– стоимость компенсирующего оборудования и его монтажа может окупиться в течение полгода – года, а использовать полученные преимущества можно будет несколько десятилетий.

Примечание: Фото https://www.pexels.com, https://pixabay.com

карта сайта

Коэффициент востребованности
990

Что такое мощность электрического тока

Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с). Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.
Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

Управление напряжением и реактивной мощностью

Это два аспекта одного воздействия, которые поддерживают надёжность и облегчают коммерческие транзакции в сетях передачи. На силовой системе переменного тока (AC) напряжение контролируется путём управления производством и поглощением Q. Существует три причины, по которым необходим такой вид управления:

  1. Оборудование энергосистемы предназначено для работы в диапазоне напряжений, обычно в пределах ± 5% от номинального напряжения. При низком напряжении оборудование работает плохо, лампочки обеспечивают меньшую освещённость, асинхронные двигатели могут перегреваться и быть повреждёнными, а некоторые электронные устройства не будут работать вообще. Высокие напряжения могут повредить оборудование и сократить срок его службы.
  2. Q потребляет ресурсы передачи и генерации. Чтобы максимизировать реальную мощность, которая может быть передана через перегруженный интерфейс передачи, потоки Q должны быть минимизированы. Аналогичным образом производство Q может ограничить реальную мощность генератора.
  3. Движущая реактивность в передающей сети несёт реальные потери мощности. Для восполнения этих потерь должны компенсироваться мощность и энергия.

Система передачи является нелинейным потребителем Q в зависимости от загрузки системы. При очень низкой нагрузке система генерирует Q, которая должна поглощаться, а при большой нагрузке система потребляет большое количество Q, которую необходимо заменить. Требования к Q системы также зависят от конфигурации генерации и передачи. Следовательно, системные реактивные требования меняются во времени по мере изменения уровней нагрузки и моделей нагрузки и генерации.

Работа системы имеет три цели управления Q и напряжениями:

  1. Она должна поддерживать достаточное напряжение во всей системе передачи и распределения как для текущих, так и для непредвиденных условий.
  2. Обеспечить минимизацию перегрузки реальных потоков энергии.
  3. Стремиться минимизировать реальные потери мощности.

Объёмная энергетическая система состоит из множества единиц оборудования, любая из которых может быть неисправна. Таким образом, система предназначена для того, чтобы выдерживать выход из строя отдельного оборудования, продолжая работать в интересах потребителей. Вот почему электрическая система требует реальных резервов мощности для реагирования на непредвиденные обстоятельства и поддержания резервов Q.

Как правильно рассчитать

Активная мощность, как сделать правильный расчет?

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.

Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.

Реактивная мощность (Reactive Power)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.

Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).

Обозначение реактивной величины

Что такое установленная мощность

Для того чтобы заранее спланировать установку в доме или квартире бытовой техники и оборудования, необходимо произвести оценку максимальной мощности, потребление которой будет осуществляться из электрической сети. Простое арифметическое сложение мощностей всех имеющихся потребителей не дает точных результатов, из-за своей неэффективности и неэкономичности.

Как правило, при такой оценке используются определенные факторы, учитывающие коэффициент использования и разновременность работы подключенных устройств. Кроме того, учитываются не только действующие, но и предполагаемые нагрузки. В результате, получается установленная мощность, измеряемая в кВт или кВА.

Значение установленной мощности будет равно сумме номинальных мощностей каждого прибора и устройства. Однако это значение не будет фактически потребляемой мощностью, которая практически всегда выше номинала. Данный параметр необходимо знать для того, чтобы правильно выбрать номинальную мощность того или иного устройства.

В промышленном производстве существует понятие полной установленной мощности. Этот показатель представляет собой арифметическую сумму полных мощностей каждого отдельно взятого потребителя. Он не совпадает с максимальной расчетной полной мощностью, поскольку при его расчетах используются различные коэффициенты и поправки.

Методика расчета мощностей трансформатора

При расчете силового  трансформатора питающей подстанции учитывается среднесуточная нагрузка и длительность периода максимальной потребления. При этом должно учитываться соотношение:

Sном≥∑Pмакс

Режим пикового потребления также должен учитывать время воздействия, поскольку при кратковременных всплесках (до 1 часа), устройство будет работать в недогруженном режиме, что экономически не выгодно.

В таких случаях нужно брать в расчет перегрузочную способность конструкции, которая зависит от конструктивных особенностей, температуры окружающего воздуха  и условий охлаждения. Это диктуется условиями допустимого нагрева составляющих элементов (обмоток, коммутирующих цепей).

Понятие коэффициента загрузки определяет отношение среднесуточного и максимального потребления электрической энергии. Коэффициент загрузки всегда меньше единицы. Его величина связана с требованиями к надежности электроснабжения. Чем меньше требуемая надежность, тем больше коэффициент может приближаться к единице.

Расчёты

Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:

А для потребителя:

Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:

P=S*cosФ

Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:

cosФ=P/S

В свою очередь реактивная мощность рассчитывается по формуле:

Q = U*I*sinФ

Для закрепления информации, ознакомьтесь с видео лекцией:

https://youtube.com/watch?v=MdbG1f-SIC4

Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.

Подставив числовые значения, получим

м2.

Ответ:
S
= 710-3
м2.

Задача
4.
Найти
внутреннее сопротивление генератора,
если известно, что мощность, выделяемая
во внешней цепи, одинакова при двух
значениях внешнего сопротивления R1
= 5 Ом и R2
= 0,2 Ом. Найти КПД генератора в каждом из
этих случаев.

Дано:
Решение

Р1
= Р2

Мощность, выделяемая во внешней цепи,
Pa
=
I2R.
По закону Ома

R1
= 5 Ом для замкнутой цепи
тогда.

R2
= 0,2 Ом Используя условие задачи Р1
= Р2,
получим

r
-?

Преобразуя
полученное равенство, находим внутреннее
сопротивление источника r:

Ом.

Коэффициентом
полезного действия называется величина

,

где
Ра
– мощность, выделяемая во внешней цепи;
Р
– полная мощность.

Ответ:
r
= 1 Ом;
=
83 %;=
17 %.

Задача
5.
ЭДС батареи
Е
= 16 В, внутреннее сопротивление r
= 3 Ом. Найти сопротивление внешней цепи,
если известно, что в ней выделяется
мощность Ра
= 16 Вт. Определить КПД батареи.

Дано:

Решение

Е
= 16 В Мощность, выделяемая во
внешней части цепи Ра
=
I2R.

r
=
3 Ом
Силу тока найдём по закону Ома для
замкнутой цепи:

Ра
= 16 Вт тогда
или

-
? R
— ? Подставляем числовые значения
заданных величин в это квадратное
уравнение и решаем его относительно R:

Ом;
R2
= 9 Ом.

Ответ:
R1
= 1 Ом; R2
= 9 Ом;

Задача
6.
Две
электрические лампочки включены в сеть
параллельно. Сопротивление первой
лампочки 360 Ом, сопротивление второй
240 Ом. Какая из лампочек поглощает большую
мощность? Во сколько раз?

Дано:

Решение

R1
= 360 Ом Мощность, выделяемая в
лампочке,

R2
= 240 Ом
P
= I
2R
(1)


?
При параллельном соединении на лампочках
будет одинаковое напряжение, поэтому
сравнивать мощности лучше, преобразовав
формулу (1) используя закон Ома

тогда

При параллельном
соединении лампочек большая мощность
выделяется в лампочке с меньшим
сопротивлением.

Ответ:

Задача
7.
Два
потребителя сопротивлениями R1
= 2 Ом и R2
= 4 Ом подключаются к сети постоянного
тока первый раз параллельно, а второй
– последовательно. В каком случае
потребляется большая мощность от сети?
Рассмотреть случай, когда R1
= R2.

Дано:

Решение

R1
= 2 Ом Потребляемая от сети мощность

R2
= 4 Ом
(1)


?где
R
– общее сопротивление потребителей;
U
– напряжение в сети. При параллельном
соединении потребителей их общее
сопротивление
а при последовательномR
= R1
+ R2.

В
первом случае, согласно формуле (1),
потребляемая мощность
а во второмоткуда

Таким образом, при
параллельном подключении нагрузок
потребляется большая мощность от сети,
чем при последовательном.

При

Ответ:

Задача
8.
. Нагреватель
кипятильника состоит из четырёх секций,
сопротивление каждой секции R
= 1 Ом. Нагреватель питается от аккумуляторной
батареи с Е
=
8В и внутренним
сопротивлением r
= 1 Ом. Как следует подключить элементы
нагревателя, чтобы вода в кипятильнике
нагрелась в максимально короткий срок?
Каковы при этом полная мощность,
расходуемая аккумулятором, и его КПД?

Дано:

R1
= 1 Ом

n
= 4

Е
=
8 В

r
= 1 Ом

Решение

Максимальную
полезную мощность источник даёт в
случае, если внешнее сопротивление R
равно внутреннему r.

Следовательно,
чтобы воданагрелась
в максимально короткий срок, нужно
секции включить так,

чтобы
R
=
r.
Это условие выполняется при смешанном
соединении секций (рис.12.2.а,б).

Мощность,
которую расходует аккумулятор, равна
Р
= IE.
По закону Ома для замкнутой цепи
тогда

Вычислим
32
Вт;

Ответ:
Р
= 32 Вт;
= 50 %.

Задача
9*.
Ток в
проводнике сопротивлением R
= 12 Ом равномерно убывает от I
= 5 А до нуля в течение времени
= 10 с. Какое количество теплоты выделяется
в проводнике за это время?

Дано:

R
= 12 Ом

I
= 5 А

I
= 0

 =
10 с

Q— ?

Решение

Так
как сила тока в проводнике изменяется,
то для подсчёта количества теплоты
формулой Q
=
I2Rt
воспользоваться нельзя.

Возьмём
дифференциал dQ
=
I
2Rdt,
тогда
В силу равномерности изменения тока
можно записатьI
=
kt,
где k
– коэффициент пропорциональности.

Значение
коэффициента пропорциональности k
найдём из условия, что при
= 10 с ток I
= 5 А, I
= k,
отсюда

Подставим
числовые значения:

Дж.

Ответ:
Q
= 1000 Дж.

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне

Активно применяются в промышленности.

Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс

Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Комплексная разновидность

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий