Практическое введение в операционные усилители

Ток смещения и смещение выхода

Входы реального ОУ потребляют небольшой ток, который называется током смещения.  В англоязычных даташитах он называется Input Bias Current. Если входные цепи ОУ построены на биполярных транзисторах, то такой ток смещения будет где-то  несколько десятков наноампер, в отличите от ОУ, где входные цепи построены на полевых транзисторах. Во входных цепях, построенных на полевых транзисторах, ток смещения оценивается десятыми долями пикоампер. Следовательно, ток смещения очень важен именно для ОУ, чьи входные цепи построены на биполярных транзисторах.

Почему же так важен ток смещения? Давайте еще раз рассмотрим схему

Даже если мы не подаем никакого сигнала на вход, то на выходе у нас все равно будет какое-то маленькое постоянное напряжение. Почему так происходит? Во всем как раз и виноват ток смещения. Он создает падение напряжения на резисторе обратной связи. В данном случае – это резистор R2. А как вы знаете, на большем сопротивлении падает большее напряжение. То есть если номинал сопротивления R2 будет очень большим, то на нем будет падать большое напряжение, которое как раз и пойдет на выход нашего ОУ.

Допустим, ток смещения равен 0,1 мкА, а резистор R2= 1 МОм, то какое падение напряжения будет в этом случае на резисторе? Вспоминаем закон Ома: I=U/R, отсюда U=IR= 0,1 В. То есть на выходе у нас уже будет постоянное напряжение 0,1 В! Подавая на вход такого усилителя полезный сигнал с током смещения в 0,1 мкА , на выходе этот сигнал будет усиливаться и суммироваться с постоянной составляющей в 0,1 В.  В нашем случае происходит смещение нулевого уровня. Наглядно – на рисунке ниже.

Ду на оу (разностный)

Uвых
= f(U1,
U2)

Т. к. схема является
линейной с несколькими источниками, то
для решения задачи можно воспользоваться
принципом суперпозиции.

Uвых
= U’вых|U2
= 0
+ U’’|U1
= 0

U’вых
= (-R2/R1)*U1

U’’
= Uвхни*(R1
+ R2)/R1

Uвхни
= (U2/(R3
+ R4))*R4

U’’
=

Uвых
= U2
— разностный усилитель

Пусть
R1
= R2
= R3
= R4
= R,
тогда

Uвых
= U2
– U1
– ДУ

Или

R1
= R3,
R2
= R4,
тогда

Uвых
= (R2/R1)(U2
– U1)
– разностный

Или

R2/R1
= R4/R3

Эти
формулы справедливы, если параметры ОУ
близки к идеальным. В реальных схемах
необходимо учитывать погрешность самого
ОУ, а также погрешность сопротивлений,
используемых в схеме. ДУ обычно
используется как инструментальный
усилитель для выделения слабого сигнала
на фоне большой синфазной помехи (или
самого сигнала).

Схема инвертирующего усилителя

Это основная схема, в которой работает ОУ. Работа операционного усилителя характеризуется не только усилением (или ослаблением) входного сигнала, но и изменением его фазы. Усиление обозначается буквой k. Приведенный ниже график показывает влияние операционного усилителя в такой схеме:

Синим цветом представлен график входного сигнала, а красным — график выходного сигнала, причем усиление системы составляет 2 (k=2). Как видно, амплитуда выходного сигнала в два раза выше, чем амплитуда входного сигнала, и также видно, что сигнал перевернут.

Схема такого усилителя достаточно проста, и представлена на следующем рисунке:

Эта схема доказывает, почему операционные усилители являются настолько популярными. Для того, чтобы вычислить значения элементов нам достаточно использовать следующую формулу:

Как видно, резистор R3 не влияет на усиление схемы, и можно было бы обойтись без него, соединив положительный вход усилителя с минусом питания. В данном случае резистор R3 используется в качестве защиты.

Основы: повторители напряжения

Первая схема настолько проста, что выглядит почти немного сумасшедшей:

Рисунок 1 – Повторитель напряжения

Данная схема называется повторителем напряжения и ведет себя следующим образом

\

На первый взгляд это не очень полезно. Почему я должен заплатить несколько дополнительных центов за операционный усилитель, если создается впечатление, что эту же работу может выполнять провод между двумя компонентами? Ответ прост, если вы знаете несколько простых вещей об операционных усилителях. Когда вы начинаете отбрасывать схему с операционными усилителями, вы должны учитывать два основных принципа:

  1. входные выводы операционного усилителя V+ и V- не потребляют ток;
  2. напряжения V+ и V– всегда равны. Это свойство иногда называют виртуальным коротким замыканием.

Рассматривая первое правило, мы видим, что схема нашего повторителя напряжения не создает никакого тока на входном выводе, подключенном к V+. Это действительно простой способ сказать, что V+ имеет действительно высокий импеданс – фактически, поскольку мы говорим об идеальных операционных усилителях, мы склонны просто сказать, что он имеет бесконечное входное сопротивление. На практике это имеет некоторые замечательные последствия: если V+ не потребляет никакого тока, это означает, что мы могли бы подключить Vвх к любому узлу любой схемы и измерить его без изменения исходной схемы. Нам не пришлось бы проходить через утомительную процедуру решения кучи новых уравнений для напряжений узлов и контурных токов, потому что мы не будем изменять их, добавляя повторитель напряжения. Довольно круто, да?

Примечание: Как и в большинстве правил, из этих правил для операционных усилителей есть некоторые исключения. На протяжении всей этой статьи мы будем игнорировать эти исключения – они будут мешать анализу нашего повторителя напряжения.

Вместо того чтобы проводить прямое измерение на Vвх в нашей гипотетической схеме, мы бы измерили Vвых. Это второе правило операционных усилителей в действии – напряжения V+ и V- всегда считаются равными. Поскольку мы соединили выводы V- и выход, мы можем продолжить и сказать что Vвых = V- = V+ из-за виртуального короткого замыкания.

Использование повторителей напряжения обеспечивает очень простой способ взаимодействия различных цепей с разными импедансами. Здорово! Что еще мы можем сделать с операционными усилителями?

Просто, но без «защиты от дурака»

При такой надежной и понятной схеме всегда существует риск самоуспокоения. Вот некоторые потенциальные проблемы, которые вы должны иметь в виду:

  1. Это очевидно, но убедитесь, что биполярный транзистор может справиться с вашим током нагрузки. Например, транзистор 2N2222, который вы найдете среди своих запчастей, вероятно, рассчитан только на постоянный ток коллектора 800 мА.
  2. Это не так очевидно: не превышаете ли вы максимальную рассеиваемую мощность транзистора? Эта проблема особенно неуловима, потому что это то, что вы можете не заметить в симуляции – например, симуляции, выполненные в этой статье, как-то не предупредили нас о том, что мы сжигали транзистор 2SCR293P. Максимальная рассеиваемая мощность для этого компонента с «каждым выводом, установленным на опорной земле» (я не совсем уверен, что это значит) составляет 0,5 Вт. В нашей схеме, если Vвых = 3 В, ток через нагрузку будет равен (3 В) / (5 Ом) = 600 мА, а напряжение коллектор-эмиттер на транзисторе составляет 12 В — 3 В = 9 В. Таким образом, рассеиваемая мощность составляет около (600 мА) × (9 В) = 5,4 Вт. Хотя ток коллектора находится в пределах допустимого диапазона, мы превысили максимальную мощность в 10 раз! Вы можете исправить это, используя более низкое напряжение питания, если это возможно, и после этого вам нужно выбрать более мощный транзистор.
  3. Когда биполярный транзистор работает в активной области, ток, текущий через базу, приблизительно равен току нагрузки, деленному на коэффициент бета, иначе известный как hFE или коэффициент усиления по току. Таким образом, операционный усилитель все еще должен подавать некоторый ток, и вы можете столкнуться с проблемами, если у вас будет высокий ток нагрузки в сочетании с относительно слабым выходным каскадом операционного усилителя. Например, если ваш ток нагрузки составляет 2500 мА, и вы используете транзистор с hFE = 100, вам потребуется ток базы около 25 мА; а некоторые операционные усилители не способны его обеспечить.
  4. Имейте в виду, что выходное напряжение операционного усилителя примерно на 0,7–0,9 В выше напряжения нагрузки. Это необходимо учитывать при выборе напряжения питания операционного усилителя. Например, допустим, вам необходимо напряжение нагрузки в диапазоне от 0 до 4 В. Подходит ли вам напряжение питания 5 В? Возможно, нет: напряжение базы может доходить до 4,9 В; и если размах выходного сигнала операционного усилителя ограничен положительной шиной минус 0,8 В, у вас будут проблемы.
  5. Биполярный транзистор начинает входить в режим насыщения, когда напряжение базы превышает напряжение коллектора примерно на 0,5 В, а поскольку напряжение базы примерно на 0,7–0,9 В выше напряжения нагрузки, напряжение коллектора биполярного транзистора (которое в этой схеме такое же, как напряжение питания) должно быть как минимум на (0,9 В – 0,5 В) = 0,4 В выше, чем максимально необходимое напряжение нагрузки. (Эти числа приблизительны и будут варьироваться в зависимости от условий эксплуатации и электрических характеристик транзистора.) Насыщение биполярного транзистора приведет к выравниванию напряжения нагрузки, прежде чем оно достигнет напряжения питания транзистора.

Инвертирующий усилитель с однополярным питанием

В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий “пьедестал”, чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:

Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?

То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.

Что имеем в итоге на виртуальном осциллографе?

Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить “пол” нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять “уровень пола” и дать сигналу место для размаха.

В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем “пола”. Но не все так просто, дорогие друзья!

Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:

Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.

В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :

Проверяем симуляцию, все ок!

Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал – это сумма постоянного напряжения и переменного синусоидального сигнала.

То есть получилось что-то типа вот этого:

Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из , с помощью которого можно отсекать лишние частоты.

Дифференцирующий усилитель на оу.

Дифференцирующий
усилитель (дифференциатор) предназначен
для получения выходного сигнала
пропорционального скорости изменения
входного. При дифференцировании сигнала
ОУ должен пропускать только переменную
составляющую входного напряжения, а
коэффициент усиления дифференцирующего
звена должен возрастать при увеличении
скорости изменения входного напряжения.
Схема дифференциатора, на входе которого
включен конденсатор С, а в цепи ОС –
резистор, представлена на рис. 11.13.
Полагая, что ОУ идеальный, ток через
резистор обратной связи можно считать
равным току через конденсатор Iс+Ir=0,

,
тогда

Рассмотренный
дифференциатор используется редко
из-за следующих недостатков:

1.
Низкого входного сопротивления на
высоких частотах, определяемого емкостью
С;

2.
Относительно высокого уровня шумов
на выходе обусловленного большим
усилением на высоких частотах;

3.
Склонности к самовозбуждению. (данная
схема может быть неустойчивой в области
частот, где частотная характеристика
дифференциатора (кривая 1 на рис .11.14),
имеющая подъем 20 дБ/дек, пересекается
с АЧХ скорректированного ОУ, имеющего
спад −20дБ/ дек (кривая 2 на рис. 11.14).
Амплитудно-частотная характеристика
разомкнутой системы в некоторой части
частотного диапазона имеет

спад
–40 дБ/дек, который определяется
разностью наклона кривых 1 и 2, а фазовый
сдвиг ϕ = –180°, что и указывает на
возможность самовозбуждения.)

Чтобы
избежать проявления этих недостатков
дифференциатора принимаются следующие
схемотехнические решения:

1.
Резистор обратной связи шунтируется
конденсатором, ёмкость которого
выбирается такой, чтобы участок АЧХ ОУ
со спадом -20 дБ/дек начинался на частоте
более высокой, чем максимальная частота
полезного дифференциального сигнала.
Это приводит к уменьшению высокочастотных
составляющих шума в выходном сигнале.
Такой участок начинается на частоте
f=1/(2πRocCoc).

2.
Последовательно со входным конденсатором
С включается резистор, который ограничивает
коэффициент усиления на высоких частотах
дифференциатора. Это обеспечивает
динамическую устойчивость и снижает
входной ёмкостной ток от источника
сигнала.

3.
Использование ОУ с низким напряжением
смещения и малыми входными токами, а
также конденсаторов с малыми токами
утечек и малошумящих резисторов.

Практическая
схема дифференциатора и его АЧХ
приведены на

рис.
11.15. Введение резистора R приводит к
появлению на частотной характеристике
(кривая 1 на рис. 11.15,б) горизонтального
участка, где не происходит дифференцирования
на частотах, превышающих частоту

Классы работы транзистора в усилителе

Примем, что на вход усилителя подается синусоидальный сигнал.

Различают классы А, АВ, В, С и D в зависимости от положения начальной рабочей точки (статического режима) и величины входного напряжения. Основными характеристиками этих режимов являются нелинейные искажения и КПД. Работа усилителя в соответствующем режиме поясняется с помощью придаточной характеристики на рисунке:

Uвых.А – действует в течение всего периода Uвх.А. Uвых.В – действует в течение половины периода Uвх.В. Uвых.С – действует в течение интервала, меньшего половины периода Uвх.С.

Класс А подразумевает работу на линейной части характеристики с малым сигналом Uвх и сравнительно большой постоянной составляющей Uвх.п. Нелинейные искажения минимальны. Однако КПД резко превышает 0,35. Применяются в высококачественных линейных усилителях.

Класс В характеризуется работой с большим сигналом Uвх. Захватывается нелинейный участок передаточной характеристики. Форма выходного напряжения искажается (полусинусоида). Однако КПД достигает 80%. Применяется в 2-х тактных усилителях мощности.

Класс С характеризуется тем, что входное напряжение больше, чем в классе В. Выходное напряжение действует в течение времени меньшего, чем половина периода. Режим сопровождается большими искажениями усиливаемого напряжения, но КПД приближается к единице. Применяется в избирательных усилителях и автогенераторах.

Класс АВ является промежуточным между А и В.

Класс D — ключевой (транзистор находится или в насыщении, или в отсечке).

Добавление усиления

Эта базовая схема не ограничена конфигурацией с коэффициентом усиления по напряжению, равным 1. Как и в случае небуферизованного операционного усилителя, вы можете вставить резисторы в петлю обратной связи, чтобы увеличить общий коэффициент усиления схемы от входного напряжения до напряжения нагрузки. Вот версия схемы с коэффициентом усиления более единицы:

Рисунок 5 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе с регулируемым коэффициентом усиления по напряжению

А вот новая схема LTspice, за которой следует график с входным напряжением VIN, выходным напряжением VOUT и напряжением, приложенным к базе биполярного транзистора.

Рисунок 6 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе с регулируемым коэффициентом усиления по напряжению в LTspiceРисунок 7 – График входного напряжения схемы, выходного напряжения схемы (напряжения на нагрузке) и выходного напряжения ОУ (напряжения на базе транзистора)

Корпусы операционных усилителей

Операционные усилители размещаются в контейнерах, называемых корпусами. Четыре наиболее распространенных типов корпусов это: ТО-5 (корпус транзисторного типа), DIP (плоский корпус с двухрядным расположением выводов), мини — DIP и плоский корпус с планарными выводами.

Операционный усилитель в корпусе ТО-5 (небольшой, металлический, круглой формы)Операционный усилитель в DIP- корпусе (самый большой из представленных)Операционный усилитель в мини DIP-корпусе (самый маленький из представленных)Операционный усилитель в плоском корпусе с боковыми выводами

Штырьки корпуса операционного усилителя используются в качестве выводов, с их помощью операционный усилитель соединяется с остальной схемой. Операционные усилители либо непосредственно припаиваются к монтажной плате, либо вставляются в колодку, которая припаяна к плате. Если операционный усилитель вставлен в колодку, его легко можно извлечь при помощи специального пинцета, предназначенного для этих целей.

Причины неустойчивой работы схем с оу

На
устойчивость работы схемы с ОУ может
оказывать влияние как неправильный
выбор номиналов элементов обратной
связи, так и паразитные параметры самого
ОУ.

Если
первую причину можно проанализировать
и устранить на стадии проектирования
схемы, то во втором случае часто приходится
использовать экспериментальные
исследования.

Рассмотрим
основные причины возникновения
самовозбуждения, например, на схеме
неинвертирующего усилителя.

Рис.
50. Неинвертирующий усилитель

Для
этой схемы:

,

(90)

где

.

В
области низких частот коэффициент
усиления – величина постоянная и
практически нет дополнительного фазового
сдвига между входным и выходным сигналами
схем. С увеличением частоты входного
сигнала уменьшается величина петлевого
усиления (за счет уменьшения Ku)
и появляется дополнительный фазовый
сдвиг между входным и выходным сигналом.
Существует некоторая частота входного
сигнала, которую называют f180,
на которой дополнительный фазовый сдвиг
между входными сигналами достигает
180.
И в результате тот вход ОУ, который был
принят за инвертирующий, становится
неинвертирующим, а противоположный
вход наоборот.

В
результате отрицательная обратная
связь становится положительной обратной
связью, и в схеме возникают условия для
самовозбуждения. То есть достаточно
небольших шумов, чтобы схема перестала
реагировать на входной сигнал, и на
выходе появляются устойчивые
высокочастотные сигналы в виде синусоиды
или меандра.

С
точки зрения математики, сказанное
можно пояснить так: появление
дополнительного фазового сдвига на
180
меняет вид связи (отрицательную обратную
связь на положительную обратную связь)
и в выражении для коэффициента усиления
с обратной связью в знаменателе меняется
знак.

.

(91)

Если
при этом
< 1, то система устойчива, аесли


1, система неустойчива, Kос

.

В
теории автоматического управления
сказанное определяет критерий Найквиста.
Он формулируется следующим образом:
система с отрицательной
обратной связью будет устойчива, пока
модуль коэффициента передачи цепи
обратной связи меньше единицы и
дополнительный фазовый сдвиг меньше
180.
При одновременном выполнении этих
условий система становится неустойчивой.

Опасность
самовозбуждения в схемах с ОУ увеличивается
в связи с тем, что практически во всех
применениях величина петлевого усиления
больше единицы, поэтому будет устойчива
схема или нет, зависит от выполнения
второго условия критерия Найквиста, то
есть от дополнительного фазового сдвига.

Поэтому
и критерии устойчивости в схемах с ОУ,
как правило, формулируют в виде запаса
устойчивости по фазе.

Рассмотрим
эти случаи:

Рис.
51. К пояснению неустойчивости схем с ОУ

Предположим,
что необходимо спроектировать схему
неинвертирующего усилителя с коэффициентом
усиления, определяемым по формуле (132).

Учитывая,
что он при наличии отрицательной обратной
связи зависит от элементов цепи
отрицательной обратной связи, которые
в сравнении с ОУ имеют гораздо меньшие
паразитные параметры, поэтому можно
считать, что его величина не зависит от
частоты входного сигнала (так как
).
Но от частоты входного сигнала сильно
зависит величина петлевого усиления,
которое в первую очередь определяется
частотной характеристикой ОУ.

На
самом деле коэффициент усиления схемы
не будет зависеть от частоты входного
сигнала (в данном случае до частоты f1),
а дальше он будет изменяться за счет
частотной зависимости коэффициента
усиления ОУ.

При
частоте f1
(которая определяется частотной
характеристикой Kос
и АЧХ разомкнутого усилителя) может
произойти дополнительный фазовый сдвиг,
приводящий к самовозбуждению схемы.

Но
при коэффициенте усиления, равном Kос,
фазовый сдвиг много меньше 180,
при этом обратная связь остается
отрицательной, и схема будет устойчива.

И
очевидно это будет при любом Kос,
пересекающем АЧХ усилителя на участке
со спадом
.
Если же пересечение частотной
характеристики коэффициента усиления
схемы с обратной связью с АЧХ ОУ происходит
на участке со спадом

схема может быть как устойчива, так и
неустойчива (
устойчива,
неустойчива). Если пересечение происходит
на участке со спадом

схема всегда будет неустойчива (даже
при Kос
= 1). Запас устойчивости должен быть не
менее 45.

Все
это относится к ОУ без внутренней
частотной коррекции.

Если
в результате расчетов и экспериментальных
исследований установлено, что данная
схема будет неустойчивой при заданном
значении коэффициента усиления нужно
вводить частотную коррекцию.

Всего один биполярный транзистор

Самая простая схема для буферизации выходного тока операционного усилителя выглядит так:

Рисунок 1 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе

А вот соответствующая схема LTspice:

Рисунок 2 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе в LTspice

Давайте получим четкое понимание идеи этой схемы, прежде чем двигаться дальше. Входной сигнал подается на неинвертирующий вход операционного усилителя, а выход ОУ подключается непосредственно к базе биполярного транзистора. Операционный усилитель и биполярный транзистор могут использовать один и тот же положительный источник питания, но в этом случае мы предполагаем, что доступны два напряжения – источник питания 5 В для маломощных, малошумящих схем и 12 В для мощной части проекта. Значение резистора нагрузки очень низкое, поэтому выходные напряжения более 200 мВ, приложенные непосредственно к нагрузке, потребуют большего выходного тока, чем может обеспечить LT6203. Транзистор, выбранный в схеме LTspice, может работать с токами около 1000 мА, что означает, что он подходит для напряжений на нагрузке до 5 В.

Ключевым моментом этой схемы является соединение обратной связи. Помните «виртуальное короткое замыкание»: при анализе операционного усилителя в схеме с отрицательной обратной связью мы можем предположить, что напряжение на неинвертирующем входе равно напряжению на инвертирующем входе. Уже одно это говорит нам о том, что выходное напряжение (то есть напряжение на нагрузке) будет равно входному напряжению. Но давайте пойдем немного глубже, чтобы убедиться, что мы действительно понимаем, что происходит; виртуальное короткое замыкание – это своего рода суеверие, которое может отвлечь нас от реальной работы операционного усилителя. Операционный усилитель умножает дифференциальное входное напряжение на очень большой коэффициент усиления. Таким образом, с отрицательной обратной связью операционный усилитель быстро достигает равновесия, потому что большие изменения выходного напряжения уменьшают дифференциальное напряжение, которое вызывает эти самые выходные изменения. В этом состоянии равновесия выход стабилизируется при любом напряжении, что устраняет разницу между напряжениями на инвертирующем и неинвертирующем входах – иными словами, операционный усилитель автоматически регулирует свой выходной сигнал любым способом, необходимым для того, чтобы Vвх– было равно Vвх+.

В контексте этой схемы буферизации выходного сигнала операционный усилитель автоматически генерирует любое выходное напряжение, необходимое для того, чтобы сделать напряжение эмиттера биполярного транзистора равным входному напряжению. Подумайте, насколько сложно это было бы в ситуации разомкнутой петли – каким-то образом необходимо было бы рассчитать соотношение между входным и выходным сигналами усилителя, чтобы компенсировать падение напряжения база-эмиттер биполярного транзистора, которое не является ни линейным, ни предсказуемым. Но с операционным усилителем и некоторой отрицательной связью проблема становится тривиальной.

Давайте подкрепим это понимание идеи парой симуляций. Первая не очень захватывающая; она просто подтверждает, что выходное напряжение следует за входным напряжением (график входного напряжения Vin скрыт под графиком выходного напряжения Vout):

Рисунок 3 – График входного и выходного напряжений схемы

На следующем графике показано, что должно быть на выходном выводе операционного усилителя, чтобы обеспечить нужное напряжение на нагрузке.

Рисунок 4 – График входного напряжения схемы, выходного напряжения операционного усилителя и выходного напряжения схемы

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Общие сведения об идеальном операционном усилителе.

Операционные усилители (ОУ) являются основной
частью всей современной электронной измерительной аппаратуры. Легкость их
применения, стабильность рабочих характеристик и способность выполнять
различные преобразования сигнала делает ОУ идеальным выбором для аналоговых схем.
Исторически ОУ получили свое развитие в области аналогового вычисления, где эти
схемы разрабатывались для суммирования,
вычитания, умножения, интегрирования, дифференцирования и т.д., с целью решения
дифференциальных уравнений во многих технических задачах.

Типичные характеристики ОУ:

Напряжение питания:

3V … +/-30V

Коэффициент усиление:

103 … 108

Входное сопротивление:

105 … 1015 Ом

Выходное сопротивление:

15 … 3000 Ом

Диапазон частоты:

0 Гц … 100 MГц

Операционный усилитель
(см. рис. ниже) — это усилитель

·с дифференциальным входом,

·большим коэффициентом усиления,

·большим входным сопротивлением,

·малым выходным сопротивлением,

·имеет широкий частотный диапазон, которой обеспечивают
непосредственные связи (т.е. без разделительных конденсаторов).

На рисунке 1 у
операционного усилителя мы видим 5 линий проводников:

Рис. 1. Обозначение на схеме операционного
усилителя ( справа по немецкой системы DIN 40 900 T10 и DIN 40 900 T13), здесь U1 — неинвертирующий
вход, U2 — инвертирующий
вход, +Uвых – выход, +Uпит — положительный
вывод питания, — Uпит — отрицательный
вывод питания.

Двуполярное питание
обеспечивает возможность инверсии знака напряжения на инвертирующем входе U2, т.е. при подаче на
вход U2 положительного
сигнала на выходе сигнал будет отрицательным. Напряжение питания ОУ обычно
равно ±15 В, но иногда может составлять от±5 В до±18 В.

Идеальный ОУ чувствителен к дифференциальному
(разностному) сигналу Uвх=U1-U2 и
нечувствителен к синфазному сигналу: Uсин=(U1+U2)/2.
Последнее обстоятельство позволяет использовать ОУ в схемах с длинными линиями.

Ниже показан входной
каскад ОУ с пассивной нагрузкой. Транзисторы Т1, Т2 и резисторы
образуют мостовую схему. Генератор тока (на схеме: кружок со стрелкой) обеспечивает
постоянство суммы токов через левое и правое плечи моста. При подаче напряжения
на базу, сопротивление транзистора падает и ток коллектора растет. Напряжение
разбаланса моста поступает на второй каскад (часто тоже дифференциальный).
Рабочая точка всегда должна оставаться в линейной области транзистора. Так как
связь между каскадами — непосредственная (без конденсаторов), то ОУ может
усиливать постоянное напряжение. Частотный диапазон при этом достаточно широкий
от 0 до 10-100 МГц.

Рис. 2. Входной узел
ОУ с пассивной и активной нагрузкой.

Использование
активной нагрузкой типа «токовое зеркало» (транзисторы Т34
на рисунке 2 справа) позволяет увеличить коэффициент усиления до десятков миллионов
раз. Равенство напряжений на базах транзисторов Т3 и Т4
приводит к равенству их коллекторных токов, один ток является
«отражением» другого — отсюда и название схемы.

В ОУ без обратной
связи коэффициент усиления k сильно зависит от частоты (k падает с частотой как
показано на рисунке 3, кривая 1), поэтому для создания «плоской АЧХ»
вводят корректирующие RC-цепи (кривые 2 и 3). Для балансировки нуля также
используют внешний переменной резистор.

Рис. 3. Частотная
зависимость коэффициента усилителя.

Кроме того, при высоком
значении коэффициента усиления трудно управлять усилителем и удерживать его от
насыщения. Если часть выходного сигнала направить обратно на вход в противофазе
с входным сигналом, т.е. создать отрицательную обратную связь, то усилитель
будет более стабильным, но приведет к снижению коэффициента усиления. Типичные
схемы включения ОУ с отрицательной обратной связью имеют коэффициент усиления
от 10 до 1000, тогда как коэффициент усиления ОУ без обратной связи находится в
диапазоне от 105 до 107. Если обратная связь положительна,
усилитель переходит в режим генерации, т.е. становится автогенератором.

Инвертирующий усилитель и
неинвертирующий усилитель. Теория.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий