Как устроен однополупериодный выпрямитель и где применяется

Однополупериодный выпрямитель

Рис. 1 — Диаграмма напряжений однополупериодного выпрямителя

Схема однополупериодного выпрямителя до боли проста и объяснять тут нечего. Для наглядности положительные и отрицательные полуволны показаны разными цветами (рис. 1). Поскольку диод обладает свойствами односторонней проводимости, на выходе получается пульсирующее напряжение одной полярности. Для схемы характерны следующие параметры:

Среднее значение выпрямленного напряжения:

Действующее значение входного напряжения:

Среднее значение выпрямленного тока:

Действующее значение тока во вторичной обмотке трансформатора:

Коэффициент пульсаций:

Достоинства схемы — простота конструкции.

Недостатки — большие пульсации, малые значения выпрямленного тока и напряжения, низкий КПД.

Применяется такая схема для питания низкоомных нагрузок, некритичных к высоким пульсациям. В бытовой технике однолупериодные выпрямители применяются в основном в импульсных источниках питания: из-за большой рабочей частоты (около 15 кГц а иногда и выше) пульсации не столь чувствительны и их легче сгладить.

Однополупериодные и двухполупериодные выпрямители переменного тока: схемы и принцип действия

Многие приборы и электросхемы рассчитаны на питание постоянным током.

Получают его путем выпрямления переменного, разными способами.

Этим занимаются специальные устройства — выпрямители переменного тока. Далее речь пойдет об их разновидностях.

Однофазные

Описанные выше одно- и двухполупериодная схемы выпрямления переменного тока, предназначены для однофазных цепей.

Они используются для питания потребителей небольшой мощности — не более нескольких сотен ватт. Это обмотки возбуждения мало- и среднемощных электродвигателей постоянного тока, различная электроника. Для более мощных потребителей применяют трехфазные выпрямители.

Трехфазные

Трехфазные выпрямители дают на выходе ток с меньшим коэффициентом пульсаций, чем однофазные. Это объясняется тем, что фазы частично перекрывают друг друга (смещение составляет 1200).

В ходе выпрямления, амплитуды фаз не складываются — только выделяется фаза с наибольшим на данный момент мгновенным значением. Трехфазные выпрямители также делятся на однополупериодные и двухполупериодные. Схема первого изображена на рисунке:

Однополупериодный трехфазный выпрямитель

Тут же изображено напряжение на выходе. Как видно, оно представляет собой сумму вершин синусоид каждой фазы. При этом глубина пульсаций в сравнении с однофазными выпрямителями заметно ниже.

Подключение вторичных обмоток трансформатора для данной схемы — только «звездой» с нулевым выводом от трансформатора. Схема двухполупериодного трехфазного выпрямителя является мостовой, за ней закрепилось название «схема Ларионова».

Используется шесть диодов, образующих две группы:

  1. анодную: диоды VD2, VD4, VD6;
  2. катодную: VD1, VD3, VD5.

Схема Ларионова

Нагрузка включается одним полюсом в точку соединения катодов, другим — в точку соединения анодов. Ток протекает по одному диоду из катодной группы и по одному из анодной. При этом диоды в группах через каждую треть периода меняются. Из катодной группы задействуется диод с наибольшим положительным потенциалом анода, из анодной — с наименьшим отрицательным потенциалом катода.

Достоинства схемы:

  • низкий коэффициент пульсации: 0,057;
  • возможность подключать обмотки трансформатора любым способом: «звездой» без нулевого провода или треугольником.

Управляемые выпрямители

Управляемые выпрямители позволяют регулировать величину выпрямленного напряжения. Вместо диодов применяются тиристоры — полупроводниковые приборы, открывающиеся по сигналу.

Задавая время открывания, можно отсекать большую или меньшую часть полуволны.

Однофазная двухполупериодная схема с общей точкой на тиристорах показана на рисунке.

От аналогичной схемы на диодах она отличается присутствием системы управления (СУ), формирующей импульсы для открывания тиристоров.

От времени подачи этого импульса (точки t0, t1, t2 и t3 на рисунке) зависит, какую часть полуволны пропустит тиристор. Это время, в свою очередь, зависит от сдвига по фазе управляющих импульсов относительно входного напряжения (угол регулирования или управления), задаваемого пользователем.

Применяются управляемые выпрямители, например, для таких целей:

  • регулирование частоты вращения двигателей постоянного тока;
  • изменение яркости светильника;
  • зарядка аккумуляторов.

по теме

О выпрямителях переменного тока в видео:

Полупроводниковые и кенотронные выпрямители получили наибольшее распространение, но ими перечень подобных приборов не исчерпывается. Существуют электрохимические, игнитронные, газотронные и многие другие разновидности. Выбирать модель следует с учетом особенностей электропотребителя.

1.1.7 Рекомендуемая литература

  1. Гусев, В. Г. Электроника и микропроцессорная техника: учеб. для вузов / В. Г. Гусев, Ю. М. Гусев. – 3-е изд. перераб. и доп. – М.: Высш. шк., 2004. – 790 с.
  2. Быстров, Ю. А. Электронные цепи и микросхемотехника: учеб. пособие/Ю. А. Быстров, И. Г. Мироненко. – М.: Высш. шк., 2002. – 384 с.: ил.
  3. Степаненко, И. П. Основы микроэлектроники: учеб. пособие для вузов / И.П. Степаненко. – 2-е изд., перераб. и доп. – М.: Лаборатория Базовых Знаний, 2003. – 488 с.: ил.
  4. Хоровиц, П. Искусство схемотехники / П. Хоровиц, У. Хилл: пер. с англ. – 6-е изд. – М.: Мир, 2003. – 704 с., ил.
  5. Довгун, В. П. Электротехника и электроника: учеб. пособие: в 2-х ч. Ч. 2 / В. П. Довгун. – Красноярск: ИПЦ КГТУ, 2006. – 252 с.

1.1.4 Стабилизаторы напряжения

В процессе работы ИВЭП напряжение на выходе сглаживающего фильтра может изменяться из-за колебаний сопротивления нагрузки, напряжения первичного источника и других факторов. Если отклонения напряжения превышают допустимую величину, в схему ИВЭП вводят стабилизаторы – устройства, обеспечивающее малые изменения выходного напряжения.

Существуют два типа стабилизаторов: параметрические и компенсационные. В параметрических стабилизаторах напряжения используют нелинейные элементы, имеющие участок ВАХ, на котором напряжение остается неизменным при изменении тока. Такой участок имеет обратная ветвь ВАХ стабилитрона.
Схема параметрического стабилизатора напряжения на кремниевом стабилитроне показана на рис. 1.1.9.

Рис. 1.1.9

Схема представляет делитель напряжения, состоящий из резистора  и стабилитрона VD. Нагрузочный резистор  включен параллельно стабилитрону. Поэтому в режиме стабилизации, когда напряжение стабилитрона почти постоянно, постоянным будет и напряжение на нагрузке.

Найдем напряжение и ток стабилитрона графическим способом. ВАХ стабилитрона и линейной части цепи показаны на рис. 1.1.10. Поскольку , обратная ветвь ВАХ стабилитрона расположена в первом квадранте. Нагрузочная характеристика линейной подсхемы представляет прямую, проходящую через точки, соответствующие режимам холостого хода
и короткого замыкания . Здесь . Точка пересечения нагрузочной прямой и ВАХ стабилитрона (точка А на рис. 1.1.10) является рабочей точкой и определяет ток и напряжение стабилитрона. Если входное напряжение изменится, нагрузочная прямая переместится параллельно самой себе. Изменятся и координаты рабочей точки (точка В  
на  рис. 1.1.10). При этом изменения выходного напряжения будут невелики до тех пор, пока рабочая точка находится на крутом участке ВАХ стабилитрона.


Рис. 1.1.10

Для поддержания режима стабилизации сопротивление  рассчитывают так, чтобы рабочая точка располагалась посередине рабочего участка ВАХ.  Если входное напряжение изменяется от  до  ,
то  можно найти по формуле

.                       (1.1.2)

Здесь:

  1.   – среднее значение напряжения на входе стабилизатора;
  2.  – средний ток стабилитрона;
  3.  – ток нагрузки.

Если входное напряжение будет изменяться, то будет изменяться и ток стабилитрона, однако напряжение стабилитрона, а следовательно, и  напряжение нагрузки будут почти постоянными.

Основными параметрами, характеризующими качество стабилизатора, являются коэффициент стабилизации , выходное сопротивление , коэффициент полезного действия .

Коэффициент стабилизации – это отношение относительного изменения входного напряжения к относительному изменению напряжения на выходе:.

Коэффициент стабилизации параметрического стабилизатора можно определить по приближенной формуле

.              (1.1.3)

В последнем выражении:
 —
динамическое сопротивление стабилитрона на участке пробоя.
Поскольку , выходное сопротивление параметрического стабилитрона
.

Коэффициент полезного действия стабилизатора равен отношению мощности, отдаваемой в нагрузку, к мощности, потребляемой от входного источника.

Какие бывают выпрямители

Построение устройств, выпрямляющих переменный ток, базируется на функции итогового агрегата. При необходимости только выравнивать колебания сборка на печатных платах производится за счет неуправляемых полупроводниковых элементов – диодов. Таким образом строятся простейшие выравнивающие элементы.

При необходимости изменений уровня мощности, которая передается на принимающее оборудование, устройство собирают с использованием контролируемых вентилей (тиристоров). Такие выпрямители тока требуются для работы некоторых двигателей, работающих за счет электричества. За счет регулировки подаваемого напряжения изменяется скорость вращения ротора.

N-фазные выпрямители

В подобных устройствах насчитывают более 3 фаз для выпрямления тока. Другие конструктивные особенности различаются. Многофазный выпрямитель может состоять как из полноценного моста, так и из четверти и половины. По количеству входов и распараллеливанию их делят на раздельные, объединенные звездами или кольцами. Кроме того, существуют последовательные виды.

Однофазный однополупериодный выпрямитель

Однофазный однополупериодный выпрямитель, схема которого приведена на рис. 30.2 а, является простейшим.

Схема однофазного двух-полупериодного выпрямителя.| Эпюры напряжений и токов выпрямителя.

Однофазный однополупериодный выпрямитель имеет ограниченное применение. Он используется главным образом в маломощных усилителях и в измерительных схемах при условии применения фильтра для сглаживания пульсаций. Основными недостатками этой схемы являются следующие: высокий уровень пульсаций тока, низкий коэффициент использования трансформатора; значительное изменение выходного напряжения при большом внутреннем сопротивлении вентиля, большое обратное напряжение; малый КПД выпрямителя из-за больших потерь на внутреннем сопротивлении вентиля.

Благодаря простоте устройства однофазные однополупериодные выпрямители часто применяются в маломощных цепях измерительных приборов, в радий — и телевизионной технике.

Таким образом, для однофазного однополупериодного выпрямителя следует выбирать анод, у которого максимально допустимое обратное напряжение больше или равно амплитудному значению напряжения на вторичной обмотке трансформатора.

Схема использования заряд.

Так как УЗ-400 и УЗ-401 имеют однофазные однополупериодные выпрямители, то для сглаживания выходного напряжения необходим конденсатор в 50 — 100 мкф. Чтобы конденсатор успевал зарядиться и обеспечить достаточное сглаживание напряжения на обмотке реле, изменять напряжение на входе УЗ-400 необходимо очень медленно. После каждого срабатывания проверяемого реле необходимо снизить входное напряжение до нуля и обождать некоторое время, чтобы конденсатор разрядился на реле. Необходимо помнить, что проверять от УЗ-400 или УЗ-401 можно только аппаратуру с номинальным током, не превышающим номинальный ток диодов в выпрямителях зарядного устройства.

На рис. 14.6, а изображена схема простейшего однофазного однополупериодного выпрямителя на ТИ-рИСТОре VS. Управление выпрямленным напряжением в управляемых выпрямителях сводится к задержке во времени момента включения тиристора по отношению к моменту его естественного включения. Это осуществляется за счет сдвига фаз между анодным напряжением и напряжением, подаваемым на управляющий электрод тиристора. Такой сдвиг фаз называют углом управления а. В зависимости от сопротивления переменного резистора R1 угол управления а может изменяться от 0 до 90, что позволяет плавно регулировать выпрямленное напряжение от наибольшей величины до ее половины. Зависимость среднего значения выпрямленного напряжения Ua от угла управления а называют характеристикой управления. Для однофазного двухполупериодного выпрямителя эта характеристика представлена на рис. 14.7, где максимальное значение угла управления атахл.

Схема трехфазного выпрямителя с отводом от нулевой точки ( а и мостового.

Однофазный выпрямитель с удвоением напряжения ( рис. 30.2 г) представляет собой последовательное соединение двух однофазных однополупериодных выпрямителей. В первом полупериоде при положительном напряжении на аноде диода VD заряжается конденсатор Сь а во втором полупериоде проводит диод VD2 и конденсатор С2 заряжается напряжением противоположной полярности. Так как эти конденсаторы включены последовательно, то выходное напряжение почти удваивается. Конденсаторы С ] и С2 могут использоваться как элементы фильтра. Трансформатор в этой схеме используется так же полно, как и в мостовой. В связи с этим такой выпрямитель часто называют полумостовым.

Основным элементом современных управляемых выпрямителей является тиристор. На рис. 9.30, а представлена схема простейшего однофазного однополупериодного выпрямителя на тиристоре.

Емкостный фильтр ( рис. 5.5 о) состоит из конденсатора, подключаемого параллельно нагрузке; применяется в маломощных цепях. Процесс сглаживания пульсаций емкостным фильтром показан на рис. 5.6. Положительные полуволны напряжения, выпрямленного однофазным однополупериодным выпрямителем, разделены паузами.

Расчет основан на допущении, что R — С Rn. Это допущение почти всегда соблюдается, давая основание считать, что переходные процессы в схеме выпрямления весьма быстро проходят, и время установления режима работы вентиля меньше времени протекания тока через него. Переходные процессы снова возникают при повторном включении вентиля, в результате чего форма кривой напряжения на конденсаторе несколько отличается от формы кривых, ранее изображенных на графиках. Чтобы учесть потери в схеме однофазного однополупериодного выпрямителя, на рис. 3 — 12, а показано сопротивление R, включенное последовательно с нагрузкой.

Классификация по назначению и устройству

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:

  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Однополупериодный выпрямитель (четвертьмост)

Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде). Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными. Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.

Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.

Устройство отличается следующими достоинствами:

  • Высокая частота пульсация;
  • Повышенная нагрузка на выпрямляющее устройство;
  • Ухудшение работы трансформатора вследствие намагничивания;
  • Невысокий показатель соотношения габаритов к мощности.

Достоинство – дешевизна.

Однополупериодный выпрямитель

Два четвертьмоста параллельно

Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.

Два полных моста последовательно

Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.

Двухполупериодный выпрямитель, мостовая схема

В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.

Три полных моста параллельно (12 диодов)

Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.

Три полных моста последовательно

Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R. Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала. Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.

Трехфазная схема выпрямления

Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.

Трехфазные выпрямители

Умножитель (удвоитель) напряжения

В тех случаях, когда нецелесообразно повышать напряжение при помощи трансформатора, применяют удвоители и умножители напряжения. В схеме параллельного удвоения в течении каждого полупериода заряжается один из конденсаторов до амплитудного значения. Так как конденсаторы соединены последовательно, то снимаемое с них постоянное напряжение будет равно двойному амплитудному значению:

В последовательной схеме удвоения в течение одного полупериода заряжается конденсатор С1 через диод VD2 до амплитудного значения. В течение следующего полупериода напряжение обмотки, складываясь с напряжением конденсатора С1, через диод VD1 заряжает конденсатор С2 до двойного амплитудного значения:

Увеличивая количество звеньев в такой схеме, можно получить умножение напряжения любой кратности.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

3.3. Однофазный мостовой выпрямитель

Схема однофазного мостового выпрямителя
представлена на рис. 3.5. В данной схеме
у трансформатора только одна вторичная
обмотка, но в нагрузку поступают два
полупериода напряжения вторичной
обмотки трансформатора. В нечётные
полупериоды ток проходит через диод
VD1, нагрузку, диодVD3.
В чётные – через диодVD2,
нагрузку, диодVD4.

Рис. 3.5. Однофазный
мостовой выпрямитель

Временная диаграмма работы однофазного
мостового выпрямителя представлена на
рис. 3.6. Она практически не отличается
от временной диаграммы двухполупериодного
выпрямителя, только лишь отмечено
прохождение тока через пары диодов VD1,VD3 иVD2,VD4,
а также видно, что обратное напряжение
на закрытом диодеUb.maxуменьшилось.

Среднее значение выпрямленного напряжения
такое же, как в предыдущей схеме

.

Рис. 3.6. Временная
диаграмма работы однофазного мостового
выпрямителя

Среднее значение тока диода
.

Максимальное обратное напряжение на
диоде равно амплитудному значению
напряжения вторичной обмотки

.

Подмагничивания сердечника трансформатора
нет, что является существенным
преимуществом данной схемы. Подробнее
рассмотрим режим работы трансформатора.
Действующее значение тока вторичной
обмотки

.

Действующее значение напряжения
вторичной обмотки трансформатора

.

Расчетная мощность вторичной обмотки
трансформатора

,

где Pd=UdId– мощность постоянного тока в нагрузке.

Расчетная мощность первичной обмотки

.

Расчетная (типовая) мощность трансформатора

.

Коэффициент использования трансформатора
по мощности

.

Для удобства сравнения различных схем
выпрямителей составим таблицу основных
электрических параметров.

Таблица 3.1

Основные электрические параметры
однофазных выпрямителей

Схема

выпрямителя

Трансформатор

Диоды

Нагрузка КП(1)

Ud/U2

I2/Id

I1/nId

S1/Pd

S2/Pd

ST/Pd

Ub.max

Ud

Ia/Id

Однофазная
однополупериодная

0,45

1,57

1,21

2,69

3,49

3,09

1,57

1

1,57

Однофазная
двухполупериодная

0,9

0,79

1,11

1,23

1,73

1,48

3,14

0,5

0,667

Однофазная

мостовая

0,9

1,11

1,11

1,23

1,23

1,23

1,57

0,5

0,667

Проведённый анализ работы схем
выпрямителей не учитывал влияние на
выходное напряжение выпрямителя
внутреннего сопротивления трансформатора
и сопротивления диодов, а также потерь
из-за прямого падения напряжения на
открытых диодах.

На холостом ходувыпрямителя выходное
напряжение будет меньше расчётного на
величину прямого падения напряжения
на открытых диодах. Для однополупериодной
и двухполупериодной схемы последовательно
с нагрузкой включён только один диод,
а в мостовой схеме – два. Поэтому мостовая
схема для малых выходных напряжений не
применяется, так как падение напряжения
на двух диодах существенно снижает
коэффициент полезного действия схемы.
Предположим, выходное напряжение
выпрямителя равно 3 В. На каждом из диодов
мостовой схемы прямое падение напряжения
составит около 1 В, итого 2 В. То есть
трансформатор должен иметь на вторичной
обмотке запас по напряжению в 40% из-за
потерь в диодах.

Под нагрузкойвыходное напряжение
выпрямителя начнёт уменьшаться из-за
потерь напряжения на внутреннем
сопротивлении трансформатора и диодов.
Зависимость выходного напряжения
выпрямителя от тока нагрузки называетсявнешней характеристикой.

Уравнение внешней характеристики

,
(3.14)

где Ud– напряжение холостого хода выпрямителя;

ra– активное сопротивление трансформатора;

rпр– прямое
динамическое сопротивление диодов;

Id– ток нагрузки.

Как следует из выражения (3.14) внешняя
характеристика выпрямителя, работающего
на активную нагрузку, представляет
собой прямую линию. Примерный вид внешней
характеристики представлен на рис. 3.7.

Рис. 3.7. Внешняя
характеристика выпрямителя с активной
нагрузкой

Более подробные сведения об однофазных
выпрямителях приведены в литературе
.

Контрольные вопросы

1. Для чего применяются выпрямители?

2. Приведите классификацию и перечислите
основные параметры выпрямителей.

3. Нарисуйте схему однополупериодного
однофазного выпрямителя с активной
нагрузкой и его временную диаграмму
работы.

4. Нарисуйте схему двухполупериодного
однофазного выпрямителя с активной
нагрузкой и его временную диаграмму
работы.

5. Нарисуйте схему мостового однофазного
выпрямителя с активной нагрузкой и его
временную диаграмму работы.

Двухполупериодный выпрямитель

Некоторые образцы силового оборудования работают только при большой величине выпрямленного тока, протекающего в нагрузке. Ее неспособны обеспечить однополупериодные выпрямители, что объясняется значительными потерями в них. Для повышения нагрузочной способности в цепях трехфазного тока все чаще применяются двухполупериодные выпрямительные приборы, содержащие по два диода на каждую из фаз.

Анализ рабочих диаграмм такого выпрямителя наглядно свидетельствует о его бесспорных достоинствах. При работе этих схем используются как положительные, так и отрицательные полуволны, что поднимает КПД всего преобразователя. Объясняется это тем, что трехфазная структура схемы совместно с двухполупериодным выпрямлением обеспечивают шестикратное увеличение частоты пульсаций. За счет этого амплитуда сигнала на выходе после сглаживающих конденсаторов заметно возрастает (в сравнении с однополупериодным выпрямителем), а отдаваемая в нагрузку мощность повышается.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий