Что такое напряжение

Рекомендации по выбору прибора

Для расчетов необходимо измерять значения величин электричества. Существуют специальные приборы, которые помогают произвести точные расчеты. Для измерения разности потенциалов применяют вольтметр.

Для конкретного случая необходимо применять тот или иной прибор. Для более точных расчетов приобретаются приборы с высоким классом точности. Классификация вольтметров:

  1. Принцип действия: электромеханические (стрелочные) и электронные.
  2. Назначение: постоянного и переменного тока, импульсные, селективные и универсальные.
  3. Конструктивное исполнение: щитовые, переносные и стационарные.

Аналоговый электромеханический вольтметр имеет большие погрешности измерений в высокоомных цепях, но отлично зарекомендовал себя в низкоомных цепях и возможностью модернизации (увеличение значений измерения U за счет добавочного резистора).

Выпрямительный вольтметр обладает более высоким классом точности. Состоит из самого измерительного прибора (обладает чувствительностью к постоянному току) и выпрямительного устройства. Они получили не очень широкое распространение из-за высоких погрешностей, и применяются в качестве сигнальных приборов (примерное значение U).

Цифровые вольтметры применяются в комбинированных приборах-мультиметрах. Поступающее напряжение на клеммы (измерительные щупы) прибора преобразовывается в сигнал при помощи аналого-цифрового преобразователя (АЦП). Происходит отображение на цифровом табло. Этот вид приборов получил широкое применение благодаря высокой точности и универсальности.

Импульсный вольтметр необходимо применять при измерении амплитуд импульсных сигналов и одиночных импульсов.

Основным применением фазочувствительных вольтметров является измерение квадратурных составляющих комплексного напряжения (наличие мнимой и действительной частей) первичной гармоники. Они, как правило, снабжены 2-мя индикаторами для выявления мнимой и действительной частей. Они получили широкое применение в измерении АФХ (амплитудно-фазовая характеристика) для подбора деталей и настройки усилителей.

Для измерения номинала постоянного напряжения используются вольтметры подгруппы В2 (вольтметры для постоянного напряжения), а также В7 (универсальные).

Для определения переменного напряжения необходимо использовать устройства из подгруппы В3 или универсального типа (В7). Однако часто в этих вольтметрах применяются специальные преобразователи из переменного напряжения в постоянное.

В3 и В7 рассчитаны только для определения среднеквадратического гармонического напряжения. В этих электроизмерительных приборах возможно применение детекторов (преобразователей): пикового, выпрямительного и квадратичного. Оптимальным вариантом является вольтметр на квадратичном детекторе, при этом измеряемое значение выдается напрямую без всяких преобразований. Измерительные приборы на пиковых и выпрямительных детекторах пересчитывают значения, тем самым уменьшая точность измерений. Для измерения периодического негармонического напряжения выбирают вольтметр на квадратичном детекторе.

Таким образом, расчет напряжения играет важную роль в электротехнике. Расчеты для переменных и постоянных цепей электрического тока существенно отличаются, в результате чего необходимо определить сначала тип тока, а затем производить расчеты. Но также необходимо соблюдать технику безопасности при работах с электричеством. Ведь ее основные положения основаны на горьком опыте человечества.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.

ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит

Пример электромагнитного фона

Наглядно представить уровень электромагнитного излучения можно на следующем примере. Для этого подойдёт внутреннее пространство офиса, в котором имеются такие приборы: персональный компьютер с WI-FI, сотовый телефон, WI-FI роутер, устройство Yota WiMax, СВЧ-печь, бытовой вентилятор.


Электромагнитное излучение от приборов

Каждый из приборов генерирует электромагнитное излучение. При изменении состояния устройства оно также изменяется. Максимальные цифры измеритель АТТ-2592 покажет у работающего прибора и находящегося радом с измерителем. Соответственно минимальные будут у выключенного устройства, находящегося на отдалённом расстоянии и излучающего радиацию в сторону от измерителя.

Например, наибольшее напряжение электрического излучения, расположенного рядом с измерителем сотового телефона с датчиком, направленным на антенну, будет 24,52 В/м, с ненаправленным – 11,44 В/м. Если передающее устройство удалено на 0,3 м от датчика, и антенна повёрнута в сторону, наивысшее значение напряжения будет 10,65 В/м. Пример наглядно показывает, как можно снизить электромагнитный фон.

Гидравлическая аналогия

Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:

  • Источник питания – насос;
  • Проводники – трубы;
  • Электроток – движение воды.

Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.

Гидравлическая аналогия

Как можно измерить переменное напряжение

Изменять непостоянную напряженность сети, как и любые другие электрические характеристики сети, можно с помощью специальных измерительных приборов: вольтметров, амперметров, омметров. Современные тестеры и мультиметры содержат в себе функции их всех, поэтому лучше пользоваться ими. Для того чтобы измерить параметр, следует следовать инструкции:

Найти шкалу измерения на приборе, которая чаще всего находится справа.
Выставить предел измерения, зная, что, например, в розетке приблизительно 220 вольт.
Взять щупы и вставить их в источник

При этом неважно, какой щуп куда будет вставлен.
Произвести измерения с учетом техники безопасности.
Зафиксировать полученные показатели.. Однофазный двигатель

Однофазный двигатель

Таким образом, отличие постоянного напряжения от переменного есть, и оно существенное. На основании постоянных и непостоянных токовых сил изготовлены генераторы, конвертирующие механическую энергию в электрический ток различных видов, который можно быстрее и дальше подать по проводам.

Электрический ток.

Электрический ток – это направленное движение заряженных частиц. Носителями заряда, при этом, могут быть электроны, ионы, протоны и дырки. Для возникновения и существования электрического тока необходимо наличие свободных заряженных частиц и наличие электрического поля. В зависимости от наличия или отсутствия заряженных частиц в веществах, они могут быть проводниками, полупроводниками и диэлектриками. Условно направлением движения тока считается направление от положительно заряженного полюса к отрицательному. На практике направление движения зараженных частиц зависит от знака их заряда: отрицательно заряженные электроны движутся от минуса к плюсу, положительно заряженные ионы – от плюса к минусу.

Количественной характеристикой электрического тока является сила тока. Сила тока обозначается буквой I и измеряется в Амперах (А). Сила тока в 1 А возникает при прохождении через поперечное сечение проводника заряда в 1 К за 1 сек.

Вернемся к примеру, с водой в емкости. Возьмем два резервуара с одинаковым уровнем воды, но разными диаметрами труб на выходе.

Сравним характер вытекания воды из обоих резервуаров: уровень воды в левом баке уменьшается быстрее, чем в правом. Т. е. интенсивность истечения воды зависит от диаметра трубы. Попробуем уравнять два потока: добавим в правый бак воду, таким образом увеличив высоту столба жидкости. Это повысит давление в правом баке и, соответственно, увеличит интенсивность истечения воды. Аналогично и в электрических цепях: с увеличением напряжения тока, увеличивается и его сила. Аналогом диаметра трубы в цепи является электрическое сопротивление проводника.

Приведенные примеры с водой наглядно демонстрируют связь между электрическим током, напряжением тока и сопротивлением.

Различают постоянный и переменный электрические токи. Если заряженные частицы постоянно движутся в одном направлении, то в цепи – постоянный ток и, соответственно, постоянное напряжение тока. Если направление движения частиц периодически меняется (они перемещаются то в одном, то в другом направлении), то это – переменный ток и возникает он, соответственно, при наличии переменного напряжения (т. е. когда разность потенциалов меняет свою полярность). Для переменного тока характерно периодическое изменение величины силы тока: она принимает то максимальное, то минимальное значения. Эти значения силы тока являются амплитудными, или пиковыми. Частота изменения полярности напряжения может быть разной. Например, в нашей стране эта частота равна 50 Герц (т. е. напряжение меняет свою полярность 50 раз в секунду), а в США частота переменного тока – 60 Гц (Герц).

В данной статье мы подробно разберем что такое напряжение, как просто его представить и измерить.

Санитарные нормы


Нормы для электрического поля

Законом закреплены нормы электромагнитного излучения. Предельно допустимая норма излучаемой магнитной составляющей от 0,2 до 10 мкТл. Повышенный уровень магнитного поля фиксируется при достижении частотой излучения цифры 50 Гц. Не допускать превышения нормы магнитного излучения поможет правильно смонтированная система электроснабжения.

Нормы для электрического поля содержат следующие показатели, закреплённые в законе:

  • жилое помещение (до 0,5 кВ/м);
  • зона жилой застройки (до 1 кВ/м);
  • вне зоны жилой застройки (до 5 кВ/м);
  • в местах пересечения высоковольтных линий электропередач с автомагистралями I-IV класса (до 10 кВ/м);
  • в незаселённой местности (до 20 кВ/м).

При нарушении должностными лицами данных норм предусмотрена административная ответственность. Важными эти показатели являются для дачников, так как участки часто располагаются в зоне прохождения высоковольтных линий электропередач.

Очень важно помнить, что человек часто бессознательно подвергается воздействию ЭМИ, так как просто не имеет возможности самостоятельно замерить уровень излучаемых волн

Кроме того, нормы носят условный характер, так как ещё необходимо принимать во внимание индивидуальные особенности организма

Физика8 класс

§ 39. Электрическое напряжение

Мы знаем, что электрический ток — это упорядоченное движение заряженных частиц, которое создаётся электрическим полем, а оно при этом совершает работу. Работу сил электрического поля, создающего электрический ток, называют работой тока. В процессе такой работы энергия электрического поля превращается в другой вид энергии — механическую, внутреннюю и др.

От чего же зависит работа тока? Можно с уверенностью сказать, что она зависит от силы тока, т. е. от электрического заряда, протекающего по цепи в 1 с. В этом мы убедились, знакомясь с различными действиями тока (см. § 35). Например, пропуская ток по железной или никелиновой проволоке, мы видели, что чем больше была сила тока, тем выше становилась температура проволоки, т. е. сильнее было тепловое действие тока.

Но не только от одной силы тока зависит работа тока. Она зависит ещё и от другой величины, которую называют электрическим напряжением или просто напряжением.

Напряжение — это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U

Чтобы ознакомиться с этой очень важной физической величиной, обратимся к опыту

На рисунке 64 изображена электрическая цепь, в которую включена лампочка от карманного фонарика. Источником тока здесь служит батарейка. На рисунке 64, б показана другая цепь, в неё включена лампа, используемая для освещения помещений. Источником тока в этой цепи является городская осветительная сеть. Амперметры, включённые в указанные цепи, показывают одинаковую силу тока в обеих цепях. Однако лампа, включённая в городскую сеть, даёт гораздо больше света и тепла, чем лампочка от карманного фонаря. Объясняется это тем, что при одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного 1 Кл, различна. Эта работа тока и определяет новую физическую величину, называемую электрическим напряжением.

Рис. 64. Различное свечение ламп при одной и той же силе тока:
а — источник тока — батарейка; б — источник тока — городская сеть

Напряжение, которое создаёт батарейка, значительно меньше напряжения городской сети. Именно поэтому при одной и той же силе тока лампочка, включённая в цепь батарейки, даёт меньше света и тепла.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Зная работу тока А на данном участке цепи и весь электрический заряд q, прошедший по этому участку, можно определить напряжение U, т. е. работу тока при перемещении единичного электрического заряда:

U = A / q

Следовательно, напряжение равно отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку.

Из предыдущей формулы можно определить:

A = Uq, q = A / U.

Электрический ток подобен течению воды в реках и водопадах, т. е. течению воды с более высокого уровня на более низкий. Здесь электрический заряд (количество электричества) соответствует массе воды, протекающей через сечение реки, а напряжение — разности уровней, напору воды в реке. Работа, которую совершает вода, падая, например, с плотины, зависит от массы воды и высоты её падения. Работа тока зависит от электрического заряда, протекающего через сечение проводника, и от напряжения на этом проводнике. Чем больше разность уровней воды, тем большую работу совершает вода при своём падении; чем больше напряжение на участке цепи, тем больше работа тока. В озёрах и прудах уровень воды всюду одинаков, и там вода не течёт; если в электрической цепи нет напряжения, то в ней нет и электрического тока.

Вопросы

  1. Опишите опыт, который доказывает, что работа тока зависит не только от силы тока, но и от напряжения.
  2. Что такое электрическое напряжение?
  3. Как можно определить его через работу тока и электрический заряд?

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.

водоносная башня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил,  давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Действующее значение напряжения

Значение электрического потенциала, имеющегося между двумя точками электросети, может быть определено по тому, какая работа была выполнена за некоторый временной отрезок, либо по выделенному количеству теплоты. В случае переменного напряжения поступают по-другому. Поскольку его характер колебаний имеет форму синусоидальной кривой, и максимальное значение показатель принимает на пике амплитуды (а при перемещении из плюсовой зоны кривой в минусовую напряжение нулевое), для вычислений применяют усредненный показатель. Именно его называют действующим, и он может быть приравнен к такому же значению постоянного напряжения.

Он меньше максимального допустимого показателя на величину, равную корню из двух от последнего (то есть примерно в 1,4 раза). У сети, имеющей номинальное напряжение 220 В, максимум, таким образом, будет равен 311 В. Эти показатели нужно учитывать, подбирая конденсаторы, диодные компоненты и другие подобные элементы для монтажа в ту или иную систему.

Синусоидальное напряжение с амплитудой 310 В эквивалентно постоянному, значение которого – 210 В

Ток.

Ток – скорость перемещения заряда в определенной точке, измеряются эта величина в Амперах

Тут тоже есть момент, который важно понять раз и навсегда. Если напряжение мы меряем между(!) двумя точками, то ток всегда проходит через(!) какую-либо точку схемы, либо через какой-либо элемент схемы

И если говорить о напряжении в какой-то точке схемы, то подразумевается напряжение между этой точкой и землей (потенциал в нашей точке минус потенциал земли, равный нулю).

Существует один важный закон для токов, называется он первым законом Кирхгофа и заключается он в том, что «сумма втекающих в точку токов равна сумме вытекающих из этой же точки токов». Для полного понимания смотрим на схему:

Тут у нас втекающие токи – I_1, I_2, I_3, а вытекающие – I_4, I_5. И по первому закону Кирхгофа мы имеем: I_1 + I_2 + I_3 = I_4 + I_5.

Трехфазный ток

Трехфазная система – это система электрической цепи, работающая на трех цепях, в которых действуют силы одной и той же частоты, но сдвинутые по фазе друг от друга на одну треть периода или на 120 градусов. Каждая отдельная цепь такой системы называется фазой, а система из трех сдвинутых по фазе токов называется трехфазным током.

Практически все современные генераторы в домах и на электростанциях представляют собой генераторы трехфазного тока. Фактически это один большой генератор, состоящий из трех маленьких двигателей, которые генерируют токи, электродвижущие силы в них сдвинуты относительно друг друга на 120 градусов или одну треть периода.

График трехфазного сигнала

Разновидности

Бывает двух видов: постоянным и переменным. Первое есть в электростатических видах цепей и тех, которые имеют постоянный ток. Переменный встречается там, где есть синусоидальная энергия

Важно, что синусоидальная энергия делится на действующее, мгновенное со средневыпрямленным. Единица измерения напряжения электрического тока вольт

Стоит также отметить, что величина энергии между фазами называется линейной фазой, а показатель тока земли и фаз — фазным. Подобное правило используется во всех воздушных линиях. На территории Российской Федерации в электрической бытовой сети стандартное — 380 вольт, а фазное — 220 вольт.


Основные разновидности

Постоянное напряжение

Постоянным называется разность между электрическими потенциалами, при которой остается такой же величина с перепадами полярности на протяжении конкретного периода. Главным преимуществом постоянной энергии является тот факт, что отсутствует реактивная мощность. Это означает, что вся мощность, которая вырабатывается при помощи генератора, потребляется нагрузкой за исключением проводных потерь. Течет по всему проводниковому сечению.

Что касается недостатков, есть сложность повышения со снижением энергии, то есть в моменте преобразования ее из-за конструкции преобразователей и отсутствия мощных полупроводниковых ключей. К тому же сложно развязывается высокая и низкая энергия.

Обратите внимание! Используется постоянная энергия в электронных схемах, гальванических элементах, аккумуляторах, электролизных установках, сварочных инструментах, инверторных преобразователях и многих других приборах. Вам это будет интересно Устройство и принцип работы лампы накаливания

Вам это будет интересно Устройство и принцип работы лампы накаливания


Постоянный ток

Переменное напряжение

Переменным называется ток, изменяющийся по величине и направлению периодически, но при этом сохраняющий свое направление в электроцепи неизменно. Нередко его называют синусоидальным. Одно направление, в котором движется энергия, называется положительным, а другое — отрицательным. Поэтому получающаяся величина называется положительной и отрицательной. Такой показатель является алгебраической величиной. В ответ на вопрос, как называется единица измерения напряжения, необходимо отметить, что это вольт. Значение его определяется по направлению. Максимальное значение — амплитуда. Бывает он:

двухфазным;


Двухфазный

трехфазным;


Трехфазный

многофазным.


Многофазный Используется активно в промышленности, на электрической станции, на трансформаторной подстанции и передается в каждый дом при помощи линий электрических передач. Больше всего используется три фазы для подключения. Подобная электрификация распространена на многих железных дорогах.

Обратите внимание! Стоит отметить, что имеются также некоторые виды двухсистемных электровозов, которые работают во многих случаях на переменном показателе. Переменный ток


Переменный ток

Напряжение в цепях переменного тока

См. также: Сетевое напряжение

Не прикасаться, корпус под напряжением. Запрещающий знак, Германия.

Для описания цепей переменного тока применяются следующие напряжения:

  • мгновенное напряжение;
  • амплитудное значение напряжения;
  • среднее значение напряжения;
  • среднеквадратическое значение напряжения;
  • средневыпрямленное значение напряжения.

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Зависит от времени (является функцией времени):

u=u(t).{\displaystyle u=u(t).}

Амплитудное значение напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM=max(|u(t)|).{\displaystyle U_{M}=\max(|u(t)|).}

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t)=UMsin⁡(ωt+ϕ).{\displaystyle u(t)=U_{M}\sin(\omega t+\phi ).}

Для сети переменного синусоидального напряжения со среднеквадратическим значением 220 В амплитудное напряжение равно приблизительно 311 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения (постоянная составляющая напряжения) есть напряжение, определяемое за весь период колебаний, как:

Um=1T∫Tu(t)dt.{\displaystyle U_{m}={\frac {1}{T}}\int _{0}^{T}u(t)dt.}

Для синусоиды среднее значение напряжения равно нулю.

Среднеквадратическое значение напряжения (устаревшие наименования: действующее, эффективное) есть напряжение, определяемое за весь период колебаний, как:

Uq=1T∫Tu2(t)dt.{\displaystyle U_{q}={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}u^{2}(t)dt}}.}

Среднеквадратическое значение напряжения наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение.

Для синусоидального напряжения справедливо равенство:

Uq=12UM≈,707UM;UM=2Uq≈1,414Uq.{\displaystyle U_{q}={1 \over {\sqrt {2}}}U_{M}\approx 0,707U_{M};\qquad U_{M}={\sqrt {2}}U_{q}\approx 1,414U_{q}.}

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно среднеквадратическое значение напряжения, и все вольтметры проградуированы, исходя из его определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратическое, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения есть среднее значение модуля напряжения:

Um=1T∫T|u(t)|dt.{\displaystyle U_{m}={\frac {1}{T}}\int \limits _{0}^{T}|u(t)|dt.}

См. также: Выпрямитель

Для синусоидального напряжения справедливо равенство:

Um=2πUM(≈,637UM)=22πUq(≈,9Uq).{\displaystyle U_{m}={2 \over \pi }U_{M}(\approx 0,637U_{M})={2{\sqrt {2}} \over \pi }U_{q}(\approx 0,9U_{q}).}

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратическим значениям.

Как возникает напряжение

Прежде, чем рассматривать единицы измерения электрического напряжения, необходимо выяснить природу этого явления. В составе атомов любого вещества имеются ядро, несущее «плюсовой» заряд, и быстро обращающиеся вокруг электроны с «минусовым». Поскольку число быстрых частиц идентично количеству протонов ядра, в обычном состоянии атом зарядом не обладает. Но при ликвидации одного или нескольких электронов атом начнет пытаться притянуть недостающие, образуя возле себя положительное поле. Отрицательный полевой потенциал возникает при появлении добавочных электронов.

Когда плюсовой и минусовой потенциалы сталкиваются, между ними возникает двустороннее притяжение. Чем более различаются потенциалы, тем активнее содержащиеся в отрицательно заряженном материале электроны переходят к имеющему обратный знак заряду, и тем, соответственно, больше напряжение электрического поля.

Когда соединяются потенциалы противоположно заряженных проводниковых элементов, появляется электрический ток. Так называется целенаправленное перемещение заряженных частиц, пытающееся ликвидировать потенциальную разность. Чтобы заряды двигались по проводнику, электрополе выполняет работу, характеризуемую напряжением.

Пример с обычной водой

Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.

Зависимость сопротивления воды от содержания солей

Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей.  Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.

Подводя итоги

Как видите, напряжение 220 В является пережитком старой системы, которые все еще допускается в ваших розетках в качестве частного варианта, как производной от номинала 230 В. Но что касается разброса от минимума до максимума, то здесь следует быть особенно осторожным. Все дело в том, что большинство производителей выпускают бытовое оборудование на определенные пределы напряжения, к примеру от 200 до 240 В, поэтому в случае повышения разности потенциалов на отметку 250 В, являющуюся допустимой, прибор может попросту выйти со строя.

Если у вас в квартире наблюдается подобная ситуация, можете сделать простую процедуру:

проверьте норму на интересующем вас приборе;

Рис. 2: проверьте норму напряжения

измерьте напряжение в розетке;

Рис. 3. Замерьте напряжение в сети

сопоставьте эти величины.

Если напряжение в сети значительно больше допустимого для устройства, вам понадобится стабилизатор или новый прибор. Если же номинал напряжения в сети больше допустимого ГОСТом, то срочно обращайтесь в энергоснабжающую организацию.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий