В чем измеряется мощность

Электрическая мощность (постоянный ток)

Что такое электрическая мощность – это величина, которая показывает нам скорость передачи, либо преобразования электроэнергии в другие виды. Простыми словами, мощность – это количество проделанной работы за определённый период.

А вот и формула, которая демонстрирует нам приведённое выше
определение:

Формула мощности

Р- мощность, А- сила тока, t-время

Приведу ещё один пример для закрепления и понимания такого определения, как электрическая мощность:

Представим двух людей в одной весовой категории в разных
точках планеты. У их автомобилей одинаковой модели и марки кончился бензин и
они толкают их на заправку. До заправки 100 метров по прямой. Первый докатил
свой автомобиль за 10 минут, а второй за 5. Соответственно у второго водителя
мощность больше.

Работа электрического тока

Электрический ток – это упорядоченное движение носителей заряда по проводнику. Такое движение возможно в результате совершения электрическим полем работы. Чему равна эта работа ?

Интуитивно понятно, что работа электрического поля тем больше, чем дольше и быстрее движутся носители заряда, и чем их больше. Действительно, носители движутся от точки с более высоким потенциалом $\varphi_1$ к точке с более низким потенциалом $\varphi_2$ (разность потенциалов в этом случае составляет $U=\varphi_1 – \varphi_2$).

$$\varphi = {A \over q}$$

Электрическое поле потенциально. Следовательно, работа поля по переносу заряда из первой точки во вторую равна произведению разности потенциалов на величину перенесенного заряда:

$$A_{12} = (\varphi_1 – \varphi_2) q = Uq$$

Напомним, что при силе тока через проводник $I$ за время $Δt$ через поперечное сечение проводника проходит заряд $IΔt$.

Следовательно, работа электрического тока за время $Δt$ составит:

$$A_{12} = UIΔt$$

Вся эта работа совершается электрическим полем, переносящим заряды по проводнику. Согласно закону сохранения энергии, вся энергия поля при этом должна выделиться на рассматриваемом участке цепи. Выделение происходит в двух видах. Во-первых, носители заряда взаимодействуют с веществом проводника, и их энергия переходит во внутреннюю энергию проводника (в нагрев).

Рис. 1. Примеры потребителей электрического тока.

Приборы для измерения электрической мощности

Провести измерения мощности позволяет ваттметр. У него две обмотки. Одна включается в цепь последовательно, как амперметр, вторая параллельно, как вольтметр. В установках электроэнергетики ваттметры определяют значения в киловатт-час «кВт*час». В измерениях нуждается не только электрическая, а также лазерная энергия. Приборы, способные измерять этот показатель, изготавливаются как стационарного, так и переносного исполнения. С их помощью оценивают уровень  лазерных излучений оборудования, применяющего этот вид энергии. Один из портативных измерителей – LP1, японского производителя. LP1 разрешает напрямую определять значения силы светового излучения, к примеру, в визуальном пятне оптических устройств проигрывателей DVD.

Прибор для измерения электрической мощности

Что такое мощность и как ее измерить?

Мощность – это мера того, сколько работы можно выполнить за определенный промежуток времени. Работа обычно определяется как поднятие груза против силы тяжести. Чем больше масса, и/или чем выше она поднимается, тем больше работы должно быть выполнено. Мощность – это мера того, насколько быстро выполняется стандартный объем работы.

Для американских автомобилей мощность двигателя оценивается в единицах, называемых «лошадиные силы», которые изначально были придуманы производителями паровых двигателей для количественной оценки работоспособности своих машин с точки зрения самого распространенного в их время источника энергии: лошадей. Одна лошадиная сила определяется в британских единицах как 550 фут·фунтов работы в секунду. Мощность двигателя автомобиля не будет указывать на высоту холма, на которую он может подняться, или какую массу он может тащить, но она указывает, насколько быстро он может подняться на определенный холм или протащить определенную массу.

Мощность механического двигателя зависит как от скорости двигателя, так и от его крутящего момента на выходном валу. Скорость выходного вала двигателя измеряется в оборотах в минуту или об/мин (RPM). Крутящий момент – это величина вращательной силы, создаваемой двигателем, и обычно измеряется в ньютон-метрах (или в фунт-футах). Ни скорость, ни крутящий момент сами по себе не являются мерой мощности двигателя.

Дизельный тракторный двигатель мощностью 100 лошадиных сил вращает вал относительно медленно, но обеспечивает большой крутящий момент. Двигатель мотоцикла мощностью 100 лошадиных сил вращает вал очень быстро, но обеспечивает относительно небольшой крутящий момент. Оба будут производить 100 лошадиных сил, но с разной скоростью и разным крутящим моментом. Уравнение для мощности на валу простое:

\

где

  • S – скорость вращения вала в об/мин;
  • T – крутящий момент в фунт-футах.

Обратите внимание на то, что в правой части уравнения есть только две переменных, S и T. Все остальные члены в этой части постоянны: 2, π и 33 000 – константы (они не меняют своего значения)

Мощность в лошадиных силах меняется только при изменении скорости и крутящего момента, больше ничего. Мы можем переписать уравнение, чтобы показать эту взаимосвязь:

Лошадинная сила ∝ ST

∝ – означает «пропорциональна»

Поскольку единица «лошадиных сил» не совпадает в точности со скоростью в оборотах в минуту, умноженной на крутящий момент в фунт-футах, мы не можем сказать, что мощность равна ST. Однако они пропорциональны друг другу. По мере изменения математического произведения ST значение мощности изменится в той же пропорции.

По какой формуле вычисляется мощность электрического тока

Она выглядит как P = A / t = I x U, обозначения следующие:

  • P – мощность тока в ваттах (Вт);
  • A – его работа на данном участке цепи в джоулях (Дж);
  • t – время, за которое совершена работа (в секундах);
  • U – напряжение электричества для участка цепи в вольтах (В);
  • I – сила в амперах (А).

Верное определение мощности критически важно для соблюдения правил техники безопасности при эксплуатации электросети и исключения возгораний. Это может произойти, если проводка выбрана неправильно

Для измерения необходимо использовать специальные приборы, но это возможно не всегда.

Определение мощности для переменного тока:

  • с помощью амперметра;
  • по формуле P= U х I с использованием значений в указанный момент времени;
  • по формуле P= U х I x сos φ, если есть сдвиг фаз.

Символ φ обозначает коэффициент мощности. Когда к сети подключен только свет или приборы для нагревания, он равен 1, для более сложного и мощного оборудования промышленного типа цифра составляет 0,8. Формула для расчета мощности через сопротивление в сети постоянного тока – P = IU.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

P=I⋅U{\displaystyle P=I\cdot U}.

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

P=I2⋅R=U2R,{\displaystyle P=I^{2}\cdot R={\frac {U^{2}}{R}},}
где R{\displaystyle R} — электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

P=I⋅E,{\displaystyle P=I\cdot {\mathcal {E}},}
где E{\displaystyle {\mathcal {E}}} — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p=I2⋅r{\displaystyle p=I^{2}\cdot r} прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность электрического тока

Зная величину работы электрического тока, несложно получить значение мощности. Любая мощность равна отношению совершенной работы за время совершения:

$$P={A\over Δt}$$

Подставив в данную формулу выражение для работы, полученное выше, имеем:

$$P=IU$$

Полученное выражение – это универсальная формула мощности постоянного тока. Электрическая мощность равна произведению тока через электрическую цепь на напряжение на концах этой цепи. При этом предполагается, что внутри цепи нет дополнительных источников ЭДС, которые бы могли влиять на величину тока.

Рис. 2. Мощность электрического тока.

Часто в задачах вместо тока через нагрузку или напряжения на ней известно сопротивление нагрузки $R$. В этом случае неизвестная величина вычисляется из закона Ома. Например, если известен ток, то мощность постоянного тока равна:

$$P={I^2R}$$

На практике чаще бывает случай, когда неизвестен ток. Так бывает, когда спираль с известным сопротивлением подключается к известному источнику напряжения. Находя ток с помощью закона Ома, получаем выражение для мощности:

$$P={U^2\over R}$$

Из последней формулы следует важный вывод. При уменьшении сопротивления нагрузки – ее мощность возрастает. То есть, если часть нагревательной спирали сгорит, а оставшиеся части будут соединены и подключены к тому же источнику напряжения, мощность спирали увеличится. В пределе, когда сопротивление нагрузки очень мало (выводы источника напряжения соединяются коротким проводником), а источник напряжения способен дать большую мощность – на нагрузке выделяется вся возможная мощность источника, как правило, в виде сильного нагрева. Такая ситуация называется коротким замыканием. Чтобы короткое замыкание не привело к пожару, в источнике напряжения должна быть защита, отключающая источник в случае короткого замыкания.

Рис. 3. Автоматы-предохранители.

Что мы узнали?

Мощность электрического тока равна произведению тока через электрическую цепь на напряжение на концах этой цепи. При этом предполагается, что внутри цепи нет дополнительных источников ЭДС, которые бы могли влиять на величину тока.

Тест по теме

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

Что такое установленная мощность?

Многие модели электротехнического оборудования имеют специальную маркировку, которая указывает на количество тока, выдаваемое во время их нормальной работы в штатном режиме (номинальная величина).

Приборы энергопотребления

Чтобы выполнить расчет, суммируются номинальные значения этих показателей для всех устройств, работающих от электричества и размещенных на объекте. Под рассматриваемым понятием понимают ту мощность, которая генерируется или потребляется промышленным предприятием, территориальной единицей или обособленной отраслью. В качестве номинала может быть взят активный или полный показатель.

Действующая электроустановка

В энергетической промышленности под этим понятием подразумевают наибольшую активность электрической установки при работе в течении длительного промежутка времени без зафиксированных перегрузок, согласно технической инструкции.

Важно! Расчет рассматриваемой величины играет важную роль в процессе проектирования электрических установок. Полученные данные станут залогом бесперебойной работы оборудования на протяжении долгого времени

Мгновенная электрическая мощность

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A{\displaystyle A} в точку B{\displaystyle B}, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки A{\displaystyle A} в точку B{\displaystyle B}. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу или над ним будет совершена работа, численно равная электрическому напряжению, действующему на участке цепи. Умножив напряжение на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца.
Мощность, по определению, — это работа в единицу времени.

Введём обозначения:

U{\displaystyle U} — напряжение на участке A−B{\displaystyle A-B} (принимаем его постоянным на интервале Δt,{\displaystyle \Delta t,})
Q{\displaystyle Q} — количество зарядов, прошедших от A{\displaystyle A} к B{\displaystyle B} за время Δt,{\displaystyle \Delta t,}
A{\displaystyle A} — работа, совершённая зарядом Q{\displaystyle Q} при движении по участку A−B,{\displaystyle A-B,}
P{\displaystyle P} — мощность.

Записывая вышеприведённые рассуждения, получаем:

PA−B=AΔt.{\displaystyle P_{A-B}={\frac {A}{\Delta t}}.}

Для единичного заряда на участке A−B{\displaystyle A-B}:

Pe(A−B)=UΔt.{\displaystyle P_{e(A-B)}={\frac {U}{\Delta t}}.}

Для всех зарядов:

PA−B=UΔt⋅Q=U⋅QΔt.{\displaystyle P_{A-B}={\frac {U}{\Delta t}}\cdot {Q}={U}\cdot {\frac {Q}{\Delta t}}.}

Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть I=QΔt{\displaystyle I={\frac {Q}{\Delta t}}} по определению, в результате получаем:

PA−B=U⋅I.{\displaystyle P_{A-B}=U\cdot I.}

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p(t){\displaystyle p(t)}, выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t){\displaystyle u(t)} и силы тока i(t){\displaystyle i(t)} на этом участке:

p(t)=u(t)⋅i(t).{\displaystyle p(t)=u(t)\cdot i(t).}

Если участок цепи содержит резистор c электрическим сопротивлением R{\displaystyle R}, то:

p(t)=i(t)2⋅R=u(t)2R.{\displaystyle p(t)=i(t)^{2}\cdot R={\frac {u(t)^{2}}{R}}.}

Дифференциальные выражения для электрической мощности

Мощность, выделяемая в единице объёма, равна:

w=dPdV=E⋅j,{\displaystyle w={\frac {dP}{dV}}=\mathbf {E} \cdot \mathbf {j} ,}
где E{\displaystyle \mathbf {E} } — напряжённость электрического поля,
j{\displaystyle \mathbf {j} } — плотность тока.

Отрицательное значение скалярного произведения (векторы E{\displaystyle \mathbf {E} } и j{\displaystyle \mathbf {j} } противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.

В случае изотропной среды в линейном приближении:

w=σE2=E2ρ=ρj2=j2σ,{\displaystyle w=\sigma E^{2}={\frac {E^{2}}{\rho }}=\rho j^{2}={\frac {j^{2}}{\sigma }},}
где σ=def1ρ{\displaystyle \sigma \,{\overset {\underset {\mathrm {def} }{}}{=}}\,{\frac {1}{\rho }}} — удельная проводимость, величина, обратная удельному сопротивлению.

В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:

w=σαβEαEβ,{\displaystyle w=\sigma _{\alpha \beta }E_{\alpha }E_{\beta },}
где σαβ{\displaystyle \sigma _{\alpha \beta }} — тензор проводимости.

Что такое мощность в электричестве: просто о сложном

Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.

Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.

Мощность электрического тока

Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.

Наука подразделяет электрическую мощность на:

  • активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
  • реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.

Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.

Мощность при разомкнутой / короткозамкнутой цепи

В разомкнутой цепи, когда между клеммами источника присутствует напряжение и нулевой ток, рассеиваемая мощность равна нулю, независимо от того, насколько велико это напряжение. Поскольку P = IE, и I = 0, и всё, что умножается на ноль, равно нулю, мощность, рассеиваемая в любой разомкнутой цепи, должна быть равна нулю. Точно так же, если бы у нас было короткое замыкание, состоящее из петли из сверхпроводящего провода (абсолютно нулевое сопротивление), у нас могло бы быть состояние с током в петле и нулевым напряжением, и аналогично, никакая мощность не рассеивалась бы. Поскольку P = IE, и E = 0, и всё, что умножается на ноль, равно нулю, мощность, рассеиваемая в сверхпроводящем контуре, должна быть равна нулю (мы рассмотрим тему сверхпроводимости в следующей главе).

Приборы для измерения

Чтобы измерить мощность, используется ваттметр, вольтметр, варметр и мультиметр с тестером. Они широко используются в различных сферах энергетики с промышленностью, связью, транспортом, наукой, медициной и бытом. В быту их используют, чтобы подсчитать потребляемую электрическую энергию и вычислить возможные повреждения диодов. Стоит отметить, что все существующие приборы для измерения делятся на щитовые с переносными и стационарными, показывающие с регистрирующими, оценивающие и сравнивающие.

Перечисленные приборы подключаются параллельным образом к нагрузке либо источнику электричества. Ваттметры с варметрами отличаются от других тем, что могут определять показатель в электромагнитно сигнале. Делятся на те, что созданы для измерений низких и высоких частот. Что касается вольтметров, они бывают аналоговыми, цифровыми, жиодно-компенсационными, импульсными, фазочувствительными и селективными.

Мультиметры являются комбинированными устройствами. Они, как и вольтметры, делятся на цифровые и аналоговые. Служат как для вычисления напряжения, так и электрической емкости с индуктивностью, температурой, силой тока и сопротивления.

Ваттметр как основной измерительный прибор для электрических приборов

Потребление мощности некоторыми электроприборами

Значения потребляемой электрической мощности некоторых потребителей
Электрический приборМощность,Вт
Лампочка фонарика1
Сетевой роутер, хаб10…20
Системный блок ПК100…1700
Системный блок сервера200…1500
Монитор для ПК ЭЛТ15…200
Монитор для ПК ЖК2…40
Лампа люминесцентная бытовая5…30
Лампа накаливания бытовая25…150
Холодильник бытовой15…700
Электропылесос100… 3000
Электрический утюг300…2 000
Стиральная машина350…2 000
Электрическая плитка1000…2000
Сварочный аппарат бытовой1000…5500
Двигатель лифта невысокого дома3 000…15 000
Двигатель трамвая45 000…75 000
Двигатель электровоза650 000
Электродвигатель шахтной подъёмной машины1 000 000…5 000 000
Электродвигатель прокатного стана6 000 000…32 000 000

Ватт, киловатт и киловатт-час

Единица измерения ватт получила свое название в честь ученого Джеймса Ватта, который занимался изучением электричества в позапрошлом веке. Именно ему приписывают изобретение универсальной паровой машины.

В ваттах сегодня измеряется любая мощность, а не только электрическая. Например, для измерения мощности двигателя автомобиля наряду с лошадиными силами также применяется ватт. Однако чаще всего используется не сама единица «ватт», а производная от нее — киловатт (кВт). По аналогии с метром и километром, а также с граммом и килограммом один киловатт равен тысяче ватт.

Нередко также подсчет энергии ведется и в других единицах, кратных ватту. Например, для измерения большой мощности удобно применять мегаватт — единицу, которая соответствует миллиону ватт. Также можно использовать и другие префиксы международной системы единиц, в том числе и те, которые соответствуют десятым, сотым, тысячным долям.

Например:

  • дециватт — это десятая часть ватта;
  • сантиватт — его сотая часть;
  • милливатт — это тысячная часть ватта.

Мощность электротока, которая потребляется обычными бытовыми приборами, такими как светильники, холодильник, телевизор лучше всего измеряется в кВт. Если ватт и производные единицы внесены в систему СИ, то киловатт-час там отсутствует. КВт·ч — это единица для измерения, которая внесистемная. Она была создана только для того, чтобы вести учет производящейся или, наоборот, использующейся электрической энергии.

Применение кВт·ч на территории РФ регламентирует ГОСТ, где однозначно указано название, обозначение и сфера, в которой она используется. Обозначаться киловатт-час может либо четырьмя русскими буквами, либо тремя английскими. Русское обозначение — «кВт·ч», а английское — «kW·h».

Мощность при наличии сдвига фаз между током и напряжением

В условиях переменного электротока совпадения в токовом направлении и напряжении отмечаются только при отсутствии катушечной индукции и конденсаторов. В этом случае векторное направление тока и напряжения идентичны. Присутствие в схеме катушек и конденсатора сопровождается совпадением токовых фаз и показателей напряжения, но векторное вращение происходит на одинаковой скорости и при неизменных параметрах угла.

Фазовое смещение или сдвиг совпадает с углом, который наблюдается между векторными радиусами токовых показателей и параметров напряжения, а отставание в этих критериях провоцирует несовпадение.

Сдвиг фаз переменного тока и напряжения

При этом мощностные характеристики являются отрицательными за счет произведения положительной и отрицательной величин. В подобных условиях электрическая цепь внешнего типа становится стандартным источником электроэнергии. Незначительный объем энергии, поступающей в цепь на положительных показателях мощности, осуществляет возврат только при наличии отрицательных значений.

Продолжительность частей периода напрямую зависит от уровня фазового сдвига, при этом показатели смещения определяются длительностью отрицательных мощностей, или так называемыми средними мощностными характеристиками электрического тока.

Простое объяснение с формулами

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

P = U I

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

P = U I Cosθ

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

P = 3 UPh IPh cosθ

P = √ (S2 – Q2) или

P =√ (ВА2 – вар2) или

Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или

кВт = √ (кВА2 – квар2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

Q = U I sinθ

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Мощность в цепи переменного тока

Внутри схемы переменного электротока различается три вида мощностей: активного типа или Р, реактивного типа или Q, и полного типа или S. В первом случае стандартной единицей замеров является Ватт (Вт или W), при этом формула для вычисления активных мощностных параметров:

P = U × I × cos φ.

Для замеров мощности реактивного типа применяется специальный вольт-ампер с обозначением «Вар» или Var.

Данной величиной характеризуются нагрузки, которые формируются внутри конструкций электротехнического типа под воздействием колебаний электромагнитных полей в цепях переменного синусоидального тока.

Расчет осуществляется на базе среднеквадратичных показателей напряжения и токовых параметров, умноженных на угловую синусоиду фазного сдвига, согласно значениям:

Q = U × I × sin φ.

В условиях значений на уровне 0/+90° синусовая величина будет положительной, а для показателей в пределах 0/-90° — только отрицательной. Замеры полной электромощности осуществляются исключительно в вольт-амперах (В·А или V·A).

Зависимость мощности от времени для переменного и постоянного тока

Величину, соответствующую произведению стандартного напряжения в зажимной области с показателями электротока периодического типа внутри цепи, целесообразно рассчитывать в соответствии с формулами:

S = U × I или S = √Р2 + Q2, где

  • значение Р представлено активной мощностью;
  • значение Q2 — показатель реактивной мощности.

Немаловажное значение отводится комплексной мощности, соответствующей импедансу. В любом случае необходимо учитывать, что положительная мощность соответствует P > 0, а отрицательные показатели — P

Крупными отечественными производителями электрической энергии генерируется переменный ток с так называемой промышленной частотой, равной 50 Гц, и показателями напряжения в пределах 10-20 кВ, а электрическое напряжение повышается на специальных трансформаторных подстанциях.

Подводим итоги

  • Что такое реактивная (бесполезная) мощность – ситуация, когда ток отстаёт или опережает напряжение, т.е. когда напряжение достигло пика, а ток равен нулю и наоборот;
  • Откуда появляется реактивная мощность — в основном из-за электродвигателей и трансформаторов (этот пункт Вам еще не понятен, если вы новичок, подписывайтесь на блог и ждите статью про катушку индуктивности);
  • Полезна ли реактивная мощность – она бесполезна и не производит никакой полезной работы, она лишь греет провода, поэтому чтобы уменьшить сечение кабеля, нам надо компенсировать реактивную составляющую. Также заводы оплачивают полную мощность, поэтому им надо компенсировать реактивную составляющую;
  • Как компенсируют реактивную мощность – к сети подключают установки для компенсации реактивной мощности;
  • Из-за чего возникает реактивная составляющая —  в первую очередь  электродвигатели, трансформаторы;

Ну вот и всё! Подписывайтесь и следите за обновлениями блога!

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий