Что является источником магнитного поля

Применение постоянных магнитов

Немаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками

В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:

  • «Nd» – ниодия,
  • «Fe» – железа,
  • «B» – бора.

Сферы, где применяют постоянные магниты:

  1. Экология;
  2. Гальваника;
  3. Медицина;
  4. Транспорт;
  5. Компьютерные технологии;
  6. Бытовые приспособления;
  7. Электротехника.

Экология

Разработаны и действуют различные системы очистки отходов промышленного производства. Магнитные системы очищают жидкости во время производства аммиака, метанола и других веществ. Магнитные улавливатели «выбирают» из потока все железосодержащие частицы.

Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений.

Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов.

Гальваника

Гальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB.

Медицина

В последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB.

Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее.

Транспорт

Транспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости.

Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье. Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ

Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое

Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое.

Компьютерные технологии

Все подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства.

Бытовые приспособления

В основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода.

Электротехника

Электротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели.

Генераторы

Генераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения.

Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом.

Ротор и статор генератора

Электродвигатели

В бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока.

Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора.

Электродвигатель с постоянными магнитами

Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники.

Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики.

В эфире

Отцы электродинамики считали, что поле создается путем деформации эфира — невидимой умозрительной среды, заполняющей все сущее (Эйнштейн во время работы над теорией относительности упразднил понятие эфира). Хотя современным людям это и может показаться странным, но до 20 века физики действительно не сомневались в некой субстанции, пронизывающей все сущее. То, как магнитные поля создаются и какова их природа, физики не могли объяснить.

Когда в обиход вошла специальная теория относительности (СТО), а эфир «официально убрали», пространство стало «пустым», однако поля даже в вакууме продолжали взаимодействовать, а ведь это невозможно между нематериальными объектами (по крайней мере согласно СТО), поэтому физики сочли нужным присвоить некоторые атрибуты электрическим и магнитным полям. Создаются такие понятия, как масса, импульс и энергия полей.

Магнитная проницаемость и ее роль в магнетизме.

Магнитная проницаемость m – это величина, характеризующая магнитные свойства материала. Ферромагнитные металлы Fe, Ni, Co и их сплавы обладают очень высокими максимальными проницаемостями – от 5000 (для Fe) до 800 000 (для супермаллоя). В таких материалах при сравнительно малых напряженностях поля H возникают большие индукции B, но связь между этими величинами, вообще говоря, нелинейна из-за явлений насыщения и гистерезиса, о которых говорится ниже. Ферромагнитные материалы сильно притягиваются магнитами. Они теряют свои магнитные свойства при температурах выше точки Кюри (770° С для Fe, 358° С для Ni, 1120° С для Co) и ведут себя как парамагнетики, для которых индукция B вплоть до очень высоких значений напряженности H пропорциональна ей – в точности так же, как это имеет место в вакууме. Многие элементы и соединения являются парамагнитными при всех температурах. Парамагнитные вещества характеризуются тем, что намагничиваются во внешнем магнитном поле; если же это поле выключить, парамагнетики возвращаются в ненамагниченное состояние. Намагниченность в ферромагнетиках сохраняется и после выключения внешнего поля.

На рис. 2 представлена типичная петля гистерезиса для магнитно-твердого (с большими потерями) ферромагнитного материала. Она характеризует неоднозначную зависимость намагниченности магнитоупорядоченного материала от напряженности намагничивающего поля. С увеличением напряженности магнитного поля от исходной (нулевой) точки (1) намагничивание идет по штриховой линии 12, причем величина m существенно изменяется по мере того, как возрастает намагниченность образца. В точке 2 достигается насыщение, т.е. при дальнейшем увеличении напряженности намагниченность больше не увеличивается. Если теперь постепенно уменьшать величину H до нуля, то кривая B(H) уже не следует по прежнему пути, а проходит через точку 3, обнаруживая как бы «память» материала о «прошлой истории», откуда и название «гистерезис». Очевидно, что при этом сохраняется некоторая остаточная намагниченность (отрезок 13). После изменения направления намагничивающего поля на обратное кривая В (Н) проходит точку 4, причем отрезок (1)–(4) соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений (H) приводит кривую гистерезиса в третий квадрант – участок 45. Следующее за этим уменьшение величины (H) до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6, 7 и 2.

Магнитно-твердые материалы характеризуются широкой петлей гистерезиса, охватывающей значительную площадь на диаграмме и потому соответствующей большим значениям остаточной намагниченности (магнитной индукции) и коэрцитивной силы. Узкая петля гистерезиса (рис. 3) характерна для магнитно-мягких материалов – таких, как мягкая сталь и специальные сплавы с большой магнитной проницаемостью. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.

Магнитные материалы с высокой проницаемостью изготовляются путем отжига, осуществляемого выдерживанием при температуре около 1000° С, с последующим отпуском (постепенным охлаждением) до комнатной температуры. При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. были разработаны кремнистые стали, величина m которых возрастала с увеличением содержания кремния. Между 1915 и 1920 появились пермаллои (сплавы Ni с Fe) с характерной для них узкой и почти прямоугольной петлей гистерезиса. Особенно высокими значениями магнитной проницаемости m при малых значениях H отличаются сплавы гиперник (50% Ni, 50% Fe) и му-металл (75% Ni, 18% Fe, 5% Cu, 2% Cr), тогда как в перминваре (45% Ni, 30% Fe, 25% Co) величина m практически постоянна в широких пределах изменения напряженности поля. Среди современных магнитных материалов следует упомянуть супермаллой – сплав с наивысшей магнитной проницаемостью (в его состав входит 79% Ni, 15% Fe и 5% Mo).

Немного истории

Магнетизм и электричество — это отнюдь не два разных явления, как ошибочно считалось долгое время. Их взаимосвязь стала понятной лишь в 1820 г., когда датский ученый Ханс Кристиан Эрстед (1777-1851 гг.) показал, что текущий по проводу электрический ток отклоняет стрелку компаса. Ток всегда создает магнитное поле

При этом не важно, где он протекает — между облаком и землей в виде молнии или в мышце нашего тела

Еще в древние времена люди пытались выяснить, что является источником магнитного поля. Более того, сделанные открытия применялись на практике. Магнетизм наблюдали и использовали (особенно для целей навигации) за тысячи лет до того, как была выяснена природа электричества, и оно нашло практическое применение. Лишь когда стало известно, что вещество состоит из атомов, было, наконец, установлено, что магнетизм и электричество взаимосвязаны. Где бы ни наблюдался магнетизм, там всегда должен присутствовать и какой-то электрический ток. Однако это открытие было лишь началом новых исследований.

Чем же определяется проявление магнитных свойств материалов в отсутствие какого-либо внешнего источника тока? Движением электронов, создающих электрические токи внутри атомов. Этот тип магнетизма мы и будем здесь рассматривать. Источник вихревого магнитного поля (переменный ток) мы вкратце охарактеризовали.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  – на ЮГ.

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Магнитная индукция

Магнитная индукция (МИ) — силовое определение МП. Это векторная величина.

Одной из главных характеристик МП является векторный потенциал.

Формула индукции магнитного поля измеряется через вектор магнитной индукции (В).

В=Fmax/I*l ,

где Fmax — наибольшая сила, воздействующая от МП на проводнике; I — сила тока в проводнике; l — длина.

Вектор МИ имеет единицы измерения — теслы (Тл).

Направление вектора МИ — это направление от южного полюса к северному магнитной стрелки, установленной в МП.

Линия МИ — несуществующая прямая, где в любом месте вектор МИ направлен к ней по касательной.

Свойства магнитной линии:

  • постоянность;
  • замкнутость;
  • ориентированность.

Чем больше магнитных линий, тем сильнее МП.

Если рассматривать МП в свободном пространстве (без окружающей его среды), то используют понятие не вектор МИ, а вектор напряженности (Н), равный разности вектора МИ и вектор намагниченности (М).

Н = В — М

Если полей более одного, то вектор МИ определяется по принципу суперпозиции: МИ основного поля, которое состоит из многих источников, можно найти через сумму МИ всех полей, входящих в состав МП.

Способы защиты от электромагнитных волн

Полностью оградить себя и окружающую среду от электрических устройств и оборудования, создающего электромагнитное загрязнение, невозможно. Однако существуют меры по снижению вредного воздействия, которые можно применять в бытовой сфере:

  • не устанавливайте электроприборы в одном месте, чтобы их магнитные поля не усиливали друг друга;
  • избегайте ситуаций, когда рядом одновременно работают сразу несколько приборов, генерирующих мощное ЭМИ, например микроволновая печь, сотовый, телевизор, компьютер;
  • включайте такие приборы только в заземленную розетку, не устанавливайте их в спальне, в зонах отдыха, рядом с обеденным и рабочим столом;
  • старайтесь использовать электрические устройства меньшей потребляемой мощности;
  • сократите время использования сотового телефона.

5.3. Силы, действующие на проводник стоком

1)
Сила
dF,
действующая
на элемент объема

dV
проводника
с током

со стороны магнитного поля легко
получается из выражения (5.1) для
аналогичной силы, действующей на
движущийся заряд, если заряд q
заменить на ρdV
и далее точно так же, как при выводе
закона Био–Савара выражения (5.5),
(5.7) в
пункте 5.1.
5):

dF
= [
jBdV
,
(5.12)

и
если ток течет по тонкому проводу, то

dF
=
Idl,
B,(5.13)

где
dl
– вектор, совпадающий по направлению
с током и характеризующий элемент длины
тонкого проводника.

Формулы
(5.12) и (5.13) выражают закон Ампера. Для
получения силы со стороны магнитного
поля, действующей на заданный объем
проводника или его линейный участок
необходимо проинтегрировать,
соответственно, (5.12) и (5.13) по элементам
тока объема или линейного участка. Силы,
действующие на токи в магнитном поле,
называют амперовыми или силами Ампера.

2)
Сила,
действующая на контур с током.

Результирующая сила F,
которая действует на контур Г стоком I
в магнитном поле, определяется из (5.13)
как

F
=
I
(5.14)

Г

Из
(5.14)
видно, что если поле B
однородное, то результирующая сила
равна нулю, т.к. B
можно вынести за знак интеграла, а
оставшийся интеграл
=
0,
поскольку представляет собой сумму
замкнутой цепочки векторов
dl
не скаляров, когда интеграл равен длине
контура).
Если же магнитное поле неоднородно, то,
в общем случае, результирующая сила
отлична от нуля.

Особый
интерес представляет плоский контур
(окружность) достаточно малого размера.
Такой контур называют элементарным или
магнитным диполем, поведение которого,
описывается с помощью магнитного момента
pm
диполя. По определению

pm
= ISn,
(5.15)

где
I
– ток в контуре; S

площадь ограниченная контуром диполя;
n
– нормаль к контуру, направление которой
связано с направлением тока в

Рис.14.

контуре
правилом правого винта (см. рис.14). В
магнитном отношении элементарный контур
с током вполне характеризуется его
магнитным моментом pm
(так же как электрический диполь
электрическим моментом ре
= ql
в электрическом отношении).

Расчет
результирующей силы, действующей на
магнитный диполь (маленький по размерам)
со стороны неоднородного магнитного
поля дает

F
=
pm
, (5.16)

где
pm
– модуль магнитного момента контура;

производная
вектора B
по направлению нормали n
или, что то же самое, по направлению
вектора pm
.

Выражение
(5.16)
аналогично выражению для силы, действующей
на электрический диполь в электрическом
поле. Из выражения (5.16) видно, что как и
в случае электрического диполя: 1)
в однородном магнитном поле сила равна
нулю, т.к.
=
0;
2) направление силы F
, в общем случае, не совпадает ни с
вектором B
, ни с вектором pm
; направление F
совпадает с направлением элементарного
приращения вектора B,
взятого в направлении вектора pm
в месте расположения контура.

Проекция
силы F
на какое то интересующее нас направление,
например X
, равно

Fx
=
pm
,
(5.17)

где
– производная проекции вектораB
по направлению нормали n
к контуру.

3)
Момент
сил, действующих на контур с током
.

Рассмотрим
плоский контур с током в однородном
магнитном поле B
. В этом случае, как мы уже знаем,
результирующая сила, действующая на
контур со стороны магнитного поля равна
нулю. В таком случае, как известно из
механики, если результирующая сил равна
нулю, то суммарный момент этих сил не
зависит от выбора точки
, относительно которой определяют
моменты этих сил. Тогда результирующий
момент M
амперовых сил в нашем случае, по
определению, будет

M
=

,
(5.18)

Где
dF
определяется
выражением (6.3).
Соответствующий расчет по формуле
(5.18)
(мы его не приводим) дает

M
= [
pmB,M
=
pmBsinα,
(5.19)

4)
Работа
при перемещении контура с током.

Если
контур с током находится в магнитном
поле B,
то на каждый элемент контура, согласно

(5.12) и (5.13), действует амперова сила,
следовательно, при перемещении контура
эти силы (магнитное поле) будут совершать
работу. В случае постоянного магнитного
поля эта работа δA
при элементарном (малом) перемещении
контура с током I
, определяется как

δA
= IdФ,
(5.20)

где


приращение магнитного потока через
контур при данном перемещении.

Полная
работа амперовых сил при перемещении
контура с током от начального положения
1 до конечного положения 2 получаем после
соответствующего интегрирования
выражения (5.20)

A
=
.
(5.21)

Если
при этом перемещении ток I
остается постоянным, то

A
= I
2
– Ф1),
(5.22)

где
Ф1
и Ф2
– магнитные потоки через контур в
начальном и конечном положениях.
Выражение (5.22) дает величину и знак
совершаемой работы.

Источники магнитного поля

У магнитизма есть свои основные источники. Земля является самым большим из них. Магнитное поле воздействует на частицы за счет силы Лоренца. Движение электрически заряженных частиц и способствует возникновению магнетизма.

Источники магнитного поля:

  • токоведущие проводники;
  • постоянные магниты;
  • электромагниты.

Все эти материалы провоцируют магнетизм. Например, постоянные магниты, сделанные из таких материалов, как железо, испытывают сильнейшее воздействие, известное как ферромагнетизм.

Известен также диамагнетизм, который вызван орбитальным действием электронов, создающих крошечные токовые петли. Диамагнетизм демонстрирует такой компонент, как пиролитический углерод, вещество, похожее на графит и висмут. 

Еще одно явление — парамагнетизм — возникает, когда материал временно становится магнитным при очень низких температурах. Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул выстраиваются рядом друг с другом; и поведение спинового стекла, в котором участвуют как ферромагнитные, так и антиферромагнитные взаимодействия.

​​Из чего состоит магнитное поле науке пока неизвестно. Но порождается оно движущимися электронами. Иными словами электрический ток создает поле, которое в свою очередь зависит от ряда факторов (заряда, скорости и ускорения частиц). 

Характеристики магнитного поля:

  • заставляет стрелки компаса выстраиваться в линию в определенном направлении (например, магнетизм существует вокруг Земли);
  • вынуждает электрически заряженные частицы двигаться по круговой или винтовой траектории при определенных условиях.

Все состоит из атомов, и у каждого атома есть ядро, состоящее из нейтронов и протонов с электронами, которые вращаются вокруг него. Сила, действующая на электрические токи в проводах в магнитном поле, лежит в основе работы всех электродвигателей. Использование магнетизма при изготовлении телефонов, телевизоров и других электронных приборов осуществляется повсеместно.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий