Особенности smd конденсаторов

Советские бумажные конденсаторы.

Диэлектриком в бумажных конденсаторах служит тонкая, хорошо пропитанная изоляционным составом
бумага,а проводящими электродами (обкладками) — тонкая металлическая фольга.
Эти конденсаторы применялись во всех видах радиотехнической, электронной и измерительной аппаратуры.
Они использовались в качестве развязывающих, разделительных, блокировочных и фильтрующих элементов
в различных цепях с постоянным и переменным(низкочастотным)напряжением.
Бумажные конденсаторы выпускались в разнообразном конструктивном оформлении, на различные номинальные
емкости и напряжения.
Наиболее широко использовались конденсаторы типов КБ (конденсаторы бумажные),
КБГ(конденсаторы бумажные герметизированные), БМ(бумажные малогабаритные),
БГМ(бумажные герметизированные малогабаритные).

Конденсаторы типа КБ.

Конденсаторы этого типа оформлены в цилиндрических бумажных корпусах
различной длины и диаметра(в зависимости от емкости и напряжения)
и имеют проволочные выводы.
Они рассчитаны на работу в интервале температур от -40 до +60 и выпускались
на номинальную емкость от 4700 пф до 0,5 мкф с допустимыми отклонениями ± 10 и ± 20%
и рабочие напряжения 200, 400, и 600 в.

Сопротивление изоляции у этих
конденсаторов в нормальных условиях (при температуре +20) составляет 500 —
2000Мом(большее сопротивление у конденсаторов с меньшей емкостью).
При температуре +60 сопротивление изоляции уменьшается у них в несколько
раз.
Выпуск этих конденсаторов был прекращен более 30 лет назад.

Конденсаторы типа КБГ.

Конденсаторы этого типа выпускались на номинальную емкость от 470пф до 2мкф
с допустимым отклонениями ± 5, ± 10, ± 20% и рабочие напряжения 200, 400, 600,1500 вольт.
Они расcчитаны на работу в интервале температур от -60 до +70.
Сопротивление изоляции не менее 10000 Мом для конденсаторов с емкостью до
0,2 мкф и не менее 2000 Мом * мкф для конденсаторов с большей емкостью.

По конструктивному оформлению конденсаторы типа КБГ разделяются на следующие
четыре вида: КБГ-И( в цилиндрических керамических или стеклянных корпусах),
КБГ-М (в цилиндрических металлических корпусах);
КБГ-МП( в плоских металлических прямоугольных корпусах),КБГ-МН( в нормальных металлических корпусах).

Конденсаторы КБГ-И и КБГ-М выпускались на рабочее напряжения 200, 400, 600 вольт.
Последние изготовлялись в двух вариантах: КБГ-М1, у которых один проволочный вывод изолирован
от корпуса, а другой соединен с ним, и КБГ-М2 с двумя изолированными от корпуса проволочными
выводами.

Конденсаторы КБГ-МП и КБГ-МН рассчитаны на те же рабочие напряжения и еще,
кроме того, на напряжения 1000 и 1500 вольт. Они изготовлялись с одним, двумя или тремя
изолированными от корпуса лепестковыми выводами и выводом, соединенном с корпусом.

Конденсаторы типа БМ.

Эти конденсаторы предназначались для использования «малогабаритной аппаратуре»(по тем временам, конечно)
Они заключены в небольшие металлические корпуса цилиндрической формы и снабжены проволочными
выводами.

Изготовлялись такие конденсаторы на номинальную емкость от 510 пикофарад, до 0,05 микрофарад,
с допускаемым отклонением ± 10 и ± 20% и рабочие напряжения 150, 200 и 300 вольт.

На главную страницу

Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт «Электрика это просто».

С помощью чего измеряют полярность у конденсатора

Как узнать где на конденсаторе плюс, если стерта маркировка? К сожалению, в подавляющем большинстве случаев, при удаленной маркировке определить правильную полярность не представляется возможным. Для некоторых типов радиодеталей, при наличии соответствующего опыта, можно определять полярность при помощи тестера. Порядок действий следующий:

  • Переключатель прибора ставят в положение измерения сопротивления.
  • Прикасаются щупами к выводам элемента. В этот момент стрелка делает бросок, показывая низкое сопротивление (это происходит из-за процесса зарядки). Затем показания прибора изменяются в сторону увеличения сопротивления.
  • Меняют полярность щупов. Стрелка совершает еще больший скачок и снова возвращается в положение высокого сопротивления. Происходит разряд и последующий заряд с противоположной полярностью.
  • Засекают значения максимального сопротивления при различной полярности подключения щупов прибора. Меньшее значение говорит о наличии токов утечки, а значит полярность подключения щупов не соответствует назначению выводов. То есть, если обнаружено некоторое сопротивление, то положительный щуп устройства подключен к отрицательному выводу конденсатора. При правильной полярности у исправного элемента токи утечки ничтожны, и сопротивление приближается к бесконечности.

Все вышесказанное справедливо только для некоторых типов электролитических конденсаторов, обладающими сравнительно большой ёмкостью. В остальных случаях достоверно определить назначение выводов достаточно проблематично.

Соблюдение полярности при подключении конденсаторов к цепям схемы важно не только для правильного функционирования устройства. Не менее важна безопасность, так как несоблюдение требований может привести к разрушению корпуса и повреждению других элементов конструкции

Конденсаторы постоянной емкости в зависимости от температурной стабильности разделяются на группы, каждая из которых характеризуется своим ТКЕ

В качестве «базовой» температуры берут 20°С. Группы ТКЕ для слюдяных конденсаторов приведены в табл. 3.4, керамических с нормированным ТКЕ — в
, керамических (низкочастотных) с ненормированным ТКЕ — в

Таблица 3.4

ГруппаАБВГ
ТКЕ, %/°СНе нормирован±0,02±0,01±0,005
ГруппаТКЕ, 10-6/°СБуквенный код
П100+ 100А
П60+60в
П33+33N
МПОС
М33-33Н
М47-47М
М75-751
М150-150Р
М220-220К
М330-330в
М470-470Т
М750-750и
М1500-1500V
М2200-2200к
М3300-3300У
ГруппаН10Н20Н30Н50Н70Н90
Допуск на изменение емкости, % в интервале температур — 60…+ 85 °С±10±20±30±50±70±90
Буквенный кодВDОXЕР

Необратимые изменения емкости конденсатора под действием температуры характеризуются коэффициентом температурной нестабильности емкости (КТНЕ):

βC
= ∆С / C

С повышением температуры уменьшаются также электрическая прочность конденсатора и срок его службы.

При понижении атмосферного давления происходят уменьшение электрической прочности, изменение емкости вследствие механической деформации, нарушение герметизации.

При поглощении влаги диэлектриком увеличивается емкость и уменьшается сопротивление изоляции.

Маркировка конденсаторов.

Полная маркировка конденсаторов содержит: обозначение типа конденсатора, номинальные емкость и напряжение, допустимое отклонение емкости от номинальной (в процентах), группу ТКЕ, месяц и год выпуска.

Маркировка может быть буквенно-цифровая или цветовая.

Конденсаторы постоянной емкости маркируются буквой К. Цифровой код обозначения типов конденсаторов (в зависимости от диэлектрика) приведен в табл. 3.7.

Таблица 3.7

ГруппаКодГруппаКод

Керамические

Uн<1600 В

Uн>1600 В

10

15

Бумажные (Uн < 2 кВ)

Бумажные

фольговые

Бумажные металлизированные

40

41

42

Оксидно-электрические, алюминиевые

50

Стеклянные

Стеклокерамические

Тонкоплёночные

21

22

26

Оксидно-электролитические

Объёмно-пористые

Оксидно-полупроводниковые

Оксидные неполярные

51

52

53

58

Слюдяные малой мощности

Слюдяные большой мощности

31

32

Воздушные

Вакуумные

Полистирольные

60

61

71

Полиэтилентереф-талатные

73

Фторопластовые

Комбинированные

Лакопленочные

72

75

76

Поликарбонатные

Полипропиленовые

77

78

Встречаются также старые обозначения постоянных конденсаторов: КД — конденсатор дисковый;
КТ — конденсатор трубчатый; КН — конденсатор нелинейный;
ФТ — фторопластовый термостойкий.

Подстроечные конденсаторы обозначаются сочетанием букв КТ. Цифровой код имеют: вакуумные — 1, с воздушным диэлектриком — 2, с газообразным — 3, с твердым — 4.

Конденсаторы переменной емкости имеют буквенную маркировку КП (тип диэлектрика кодируется так же, как и для подстроечных конденсаторов).

Для нелинейных конденсаторов используют обозначение КН. Следующая
цифра кода 1 соответствует
варикондам, цифра 2 — термоконденсаторам.

Сочетанием букв КС маркируются конденсаторные сборки. Кодированное обозначение номинальных емкостей состоит из трех или четырех знаков.

Емкость от 0 до 999 пФ выражают в пикофарадах и обозначают буквой «р», например, емкость
10 пФ маркируют как 10 р.

Емкость от 1000 пФ до 999999 пФ выражают в нанофарадах и обозначают буквой «n». Например, емкость 0,022 мкФ —
22 n.

Емкость от 1 мкФ до 999 мкФ выражают в микрофарадах и обозначают буквой
«μ«. Например, 10 мкФ — 10μ.

Емкость от 1000 до 999999 мкФ выражают в миллифарадах и обозначают буквой «m«. Например, 2000 мкФ — 2
m.

Емкость от 1 Ф и более обозначают в фарадах буквой «F».

В случае необходимости буква кода ставится на место запятой десятичной дроби, например,
5,6 пФ — 5р6.

Маркировка емкости конденсаторов отечественного производства более ранних выпусков осуществлялась следующим образом: емкость менее 100 пФ указывалась в пикофарадах буквой
П; для интервала 100 пФ £ С
< 0,1 мкФ емкость указывалась в нанофарадах буквой Н и для
С ³ 0,1 мкФ в микрофарадах — буквой
М.

Вернуться на главную страницу …

Электрические характеристики

Серия CA

  1. Диапазон рабочих напряжений: 4 ~ 100 V.D.C.
  2. Диапазон рабочих температур: -40°C ~ +85°C
  3. Допустимое отклонение емкости: ±20% (120 Гц/+25°C)
  4. Ток утечки (мкА): 1<=0,01 CV + 3, где:I — ток утечки (мкА)С — номинальная емкость (мкФ)V — рабочее напряжение (В)(2 мин. после работы при нормальном рабочем напряжении)
  5. Диэлектрические потери: (120 Гц, 25°C)
    W V (B)46,3101625355063100
    D. F. (%)Ф30,370,280,370,220, 180, 160, 140, 14
    Ф4 ~ Ф60,350,260,350,200,300, 160, 260, 140, 160, 120, 140, 120, 14
    Ф8 ~ Ф100,400,350,260, 200, 160, 140, 120, 180, 18
  6. Низкая температурная стабильность (120 Гц):
    W*V(B)46,3101625355063100
    -25/ +15°C743322233
    -40/ +20°C1586443344
  7. Срок службы: 2000 часов 85°C
  8. При максимальном значении тока:
    • Изменение емкости: в пределах 20% от начального значения
    • Диэлектрические потери: не превышают 200% от начального значения
    • Ток утечки: не превышает начального значения.
  9. Изменение параметров со временем: 1000 часов 85°C. Остальные изменения — см. п. 7
Емкость (мкФ)Напряжение, В
46,31016253550
0,1B
0,22B
0,33B
0,47B
1,0B
2,2B
3,3B
4,7BBB
6,8BB
10BBBD
22BBBDDD
33BBBDD
47BBDDD
68D
100DD
150D
220DD

Серия CB

  1. Диапазон рабочих напряжений: 4 ~ 100 V.D.C.
  2. Диапазон рабочих температур: -40°C ~ +105°C
  3. Допустимое отклонение емкости: ±20% (120 Гц/+25°C)
  4. Ток утечки (мкА): 1<=0,01 CV + 3, гдеI — ток утечки (мкА)С — номинальная емкость (мкФ)V — рабочее напряжение (В)(2 мин. после работы при нормальном рабочем напряжении)
  5. Диэлектрические потери: (120 Гц, 25°C)
    W V (B)6,3101625355063100
    D. F. (%)Ф4 ~ Ф6,30,300,350,220,300,160,260,140,180,120,140, 120, 120, 12
    Ф8 ~ Ф100,350,260,200,160,140, 120, 180, 18
  6. Низкая температурная стабильность (120 Гц)
    W*V(B)6,3101625355063100
    -25/ +15°C43222233
    -40/ +20°C86443344
  7. Срок службы: 1000 часов 105°C при максимальном значении тока
    • Изменение емкости: в пределах 20% от начального значения
    • Диэлектрические потери: не превышают 200% от начального значения
    • Ток утечки: не превышает начального значения.
  8. Изменение параметров со временем: 1000 часов 105°C. Остальные изменения — см. п. 7
Емкость (мкФ)Напряжение, В
6,31016253550
0,1B
0,22B
0,33B
0,47B
1,0B
2,2B
3,3B
4,7BBB
10BBB
22BDDD
33BDD
47BDD
68D
100DDD

Как выбрать конденсатор в зависимости от параметров?

Для того, чтобы понять, какие конденсаторы выбрать для замены, изучим основные их параметры, главными из которых являются напряжение, емкость и температура:

  • емкость, то есть способность накапливать электрозаряд; ее размер зависит от площади проводников, толщины слоя, а также материала изготовления диэлектрика; измеряется в фарадах (Ф);
  • номинальное напряжение, при котором прибор сможет отработать срок службы без каких-либо изменений параметров; напряжение заменяемого конденсатора должно точно соответствовать или быть выше напряжения вышедшего из строя устройства;
  • максимальная рабочая температура: должна иметь аналогичное или более высокое значение.

Теперь чуть подробней о том, как выбрать конденсатор по емкости. В идеале она должна равняться емкости предыдущего прибора или быть чуть большей. Монтаж же накопителя емкости меньшей, чем требуемая, ухудшит работоспособность системы.

Конденсаторы могут обладать и отрицательной емкостью. В таких устройствах при увеличении напряжения заряд не увеличивается, а уменьшается. Они предназначены для ускорения работы ПК и снижения его перегрева.

Параметры устройства указываются на его корпусе.

Кроме вышеописанных параметров, существенное значение также имеют:

  • удельная емкость: отношение емкости к объему (иногда массе) диэлектрика; при его уменьшении этот параметр увеличивается;
  • эквивалентное последовательное сопротивление (обозначается буквами ESR) материалов изготовления (выводов, обкладок) и потери в диэлектрике;
  • плотность энергии относительно массы корпуса в электролитических устройствах;
  • номинальное напряжение на корпусе;

полярность (для электролитических устройств), то есть расположение положительного и отрицательного зарядов («+», «-»); если в остальных видах конденсаторов она не имеет значения, то есть любая из пластин может служить как в качестве плюса, так и минуса, то в электролитических неверное подключение приведет к поломке прибора.

Полярность конденсатора

Полярность: некоторые конденсаторы изготавливаются таким образом, что они могут выдерживать приложенное напряжение только одной полярности, но не другой. Это связано с их конструкцией: диэлектрик представляет собой микроскопически тонкий слой изоляции, нанесенный во время изготовления на одну из пластин с помощью постоянного напряжения. Они называются электролитическими конденсаторами, и их полярность четко обозначена.

Рисунок 1 – Полярность конденсатора

Изменение полярности напряжения на электролитическом конденсаторе может привести к разрушению этого сверхтонкого диэлектрического слоя, что приведет к разрушению устройства. Однако толщина этого диэлектрика позволяет получать чрезвычайно высокие значения емкости при относительно небольшом размере корпуса. По той же причине электролитические конденсаторы имеют тенденцию иметь низкое номинальное напряжение по сравнению с другими типами конструкций конденсаторов.

Виды

«Электролиты» подразделяются на следующие типы элементов:

  • алюминиевые;
  • танталовые;
  • ниобиевые.

Каждый из видов рассчитан на определённые условия работы.

Алюминиевые электролитические конденсаторы (ЭК)

Алюминиевый ЭК включает в себя две ленты из алюминиевой фольги и бумагу, пропитанную электролитом. Всё это свёрнуто в рулон и помещено в металлический корпус. Диэлектрик в этой детали – окись алюминия. Чтобы увеличить площадь поверхности, фольгу протравливают в электролите под напряжением. При этом ёмкость увеличивается многократно. Конструкция герметически уплотняется резиновыми прокладками.

К сведению. Вторая полоска фольги нужна для улучшения контакта с электролитом (катодом) и для формирования минусового вывода.

Танталовые конденсаторы

Размер таких ЭК маленький, что позволяет использовать их в печатных платах с навесным монтажом. В качестве анода применяется тантал. У него пористая структура, даёт большую рабочую площадь. Диэлектриком является оксид того же тантала – Та2О5. Слой формируют, помещая заготовку в раствор кислоты с высокой температурой, после чего пропускают через них ток. Регулируя силу тока, контролируют толщину плёнки. Катодом служит диоксид марганца. Заготовку замачивают в растворе Mn(NO3)2 (нитрат марганца) и сушат.

Интересно. Катодный вывод делают, покрывая слой диоксида марганца графитом, его, в свою очередь, – слоем серебра. После чего к серебру припаивают отвод для установки выводов элемента в отверстия на плате. При изготовлении полярных SMD-конденсаторов формуют вывод-контакт из посеребрённой эпоксидной смолы.

Танталовый ЭК

Ниобиевые конденсаторы

В элементах этого типа в качестве анода используют ниобий. Остальная технология и свойства таких двухполюсников схожи с танталовыми собратьями.

Ниобиевый ЭК

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.


Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.


Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.


Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт

При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание

Принцип работы

В цепи постоянного тока положительные заряды собираются на одной пластине, отрицательные — на другой. За счет взаимного притяжения частицы удерживаются в приборе, а диэлектрик между ними не дает соединиться. Тоньше диэлектрик — крепче связаны заряды.

Конденсатор берет нужное для заполнения ёмкости количество электричества, и ток прекращается.

При постоянном напряжении в цепи элемент удерживает заряд до выключения питания. После чего разряжается через нагрузки в цепи.

Переменный ток через конденсатор движется иначе. Первая ¼ периода колебания — момент заряда прибора. Амплитуда зарядного тока уменьшается по экспоненте, и к концу четверти снижается до нуля. ЭДС в этот момент достигает амплитуды.

Во второй ¼ периода ЭДС падает, и элемент начинает разряжаться. Снижение ЭДС вначале небольшое и ток разряда, соответственно, тоже. Он нарастает по той же экспоненциальной зависимости. К концу периода ЭДС равна нулю, ток — амплитудному значению.

Watch this video on YouTube

В третьей ¼ периода колебания ЭДС меняет направление, переходит через нуль и увеличивается. Знак заряда на обкладках изменяется на противоположный. Ток уменьшается по величине и сохраняет направление. В этот момент электрический ток опережает по фазе напряжение на 90°.

В катушках индуктивности происходит наоборот: напряжение опережает ток. Это свойство стоит на первом месте при выборе, какие цепи использовать в схеме: RC или RL.

В завершении цикла при последней ¼ колебания ЭДС падает до нуля, а ток достигает амплитудного значения.

«Ёмкость» разряжается и заряжается по 2 раза за период и проводит переменный ток.

Это теоретическое описание процессов. Чтобы понять, как работает элемент в цепи непосредственно в устройстве, рассчитывают индуктивное и емкостное сопротивление цепи, параметры остальных участников, и учитывают влияние внешней среды.

Что такое конденсатор?

Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.

Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).

Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.

Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.

Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.

Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.

Паразитные параметры

Отдельные виды параметров являются паразитными, которые стараются снизить при конструировании и изготовлении. Их описание приведено ниже.

Эквивалентная схема

Данный параметр зависит от свойств диэлектрика и материала корпуса. Он показывает, насколько уменьшается заряд с течением времени у элемента, не включенного во внешнюю цепь. Утечка происходит в результате неидеальности диэлектрика и по его поверхности.

Для некоторых конденсаторов в характеристиках указывается постоянная времени Т, которая показывает время, в течении которого напряжение на обкладках уменьшится в е (2.71) раз. Численно постоянная времени равняется произведению сопротивления утечки на емкость.

Эквивалентное последовательное сопротивление (Rs)

Эквивалентное последовательное сопротивление ЭПС (в англоязычной литературе ERS) слагается из сопротивления материала обкладок и выводов. К нему также может добавляться поверхностная утечка диэлектрика.

По своей сути, ЭПС представляет собой сопротивление, соединенное последовательно с идеальным конденсатором. Такая цепь в некоторых случаях может влиять на фазочастотные характеристики. ЭПС обязательно должно учитываться при проектировании импульсных источников питания и контуров авторегулирования.

Электролитические конденсаторы имеют особенность, когда из-за наличия внутри паров электролита, воздействующих на выводы, величина ЭПС со временем увеличивается.

Эквивалентная последовательная индуктивность (Li)

Поскольку выводы обкладок и сами обкладки металлические, то они имеют некоторую индуктивность. Таким образом, конденсатор представляет собой резонансный контур, что может оказать влияние на работу схемы в определенном диапазоне частот. Наименьшую индуктивность имеют СМД компоненты ввиду отсутствия у них проволочных выводов.

Тангенс угла диэлектрических потерь

Отношение активной мощности, передаваемой через конденсатор, к реактивной, называется тангенсом угла диэлектрических потерь. Данная величина зависит от потерь в диэлектрике и вызывает сдвиг фазы между напряжением на обкладке и током. Тангенс угла потерь важен при работе на высоких частотах.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ означает изменение емкости при колебаниях температуры. ТКЕ может быть как положительным, так и отрицательным, в зависимости от того, как ведет себя емкость при изменениях температуры.

Для фильтрующих и резонансных цепей для компенсации температурного дрейфа в одной цепи используют элементы с разным ТКЕ, поэтому многие производители группируют выпускаемые элементы по величине и знаку коэффициента.

Диэлектрическая абсорбция

Данный эффект еще называют эффектом памяти. Проявляется он в том, что при разряде конденсатора через низкоомную нагрузку через некоторое время на обкладках возникает небольшое напряжение.

Величина диэлектрической абсорбции зависит от материалов, из которых изготовлен элемент. Она минимальна для тефлона и полистирола и максимальна для танталовых конденсаторов

Важно учитывать эффект при работе с прецизионными устройствами, особенно интегрирующими и дифференцирующими цепями

Паразитный пьезоэффект

Так называемый «микрофонный эффект» выражается в том, что при воздействии механических нагрузок, в том числе акустических колебаний, керамический диэлектрик в некоторых типах устройств проявляет свойства пьезоэлектрика и начинает генерировать помехи.

Самовосстановление

Свойством самовосстановления после электрического пробоя обладают электролитические бумажные и пленочные конденсаторы. Такие типы конденсаторов и их разновидности нашли применение в цепях, обеспечивающих запуск электродвигателей, в особенности, если трехфазный асинхронный электродвигатель включается в однофазную сеть. Свойство восстановления широко используется в силовой технике.

Маркировка отечественных конденсаторов

Постсоветские производители маркируют свои изделия довольно подробно и унифицировано. В редких случаях возможны некоторые отличия в обозначениях.

Ёмкость

Это параметр всегда указывается первым, для дробных чисел его кодировка состоит из трех знаков. Первая цифра – это целая часть числа, отражающего значение емкости, третья – дробная часть, на второй позиции находится буква, обозначающая единицу измерения: m – миллифарад, n – нанофарад, p – пикофарад. Например, 3n6 – 3,6 нанофарад. Целые значения указываются так: число и рядом единица измерения с добавленной буквой F (3 pF – 3 пикофарада).

Важно! Если номинал не указан, целая цифра говорит о том, что значение указывалось в пикофарадах, десятичная дробь – в микрофарадах

Номинальное напряжение

Если размер изделия достаточный, показатель указывают по стандартной схеме: 180 В (или V) – 180 вольт. На миниатюрных конденсаторах значение кодируют латинской буквой, например, 160 В – литерой Q.

Дата выпуска

Ее принято указывать четырьмя цифрами: первые две – это последние цифры года выпуска, вторые две – месяц (9608 – август 1996 года).

Расположение маркировки на корпусе

Поскольку указание параметров очень важно для монтажа схемы, данные показатели помещают на корпусе устройства самой первой строкой. В начале всегда указывают емкость

Цветовая маркировка отечественных радиоэлементов

Это кодировка с использованием 4 цветных полос, где каждый цвет соотносится с определенной цифрой. Первые две полосы показывают емкость в пикофарадах, следующая – допустимое отклонение, последняя – номинальное напряжение.

Маркировка конденсаторов импортного производства

У американских и других импортных изделий кодировка емкости выглядит так: начальные две цифры – значение в пикофарадах, третья – число нулей.

Цветовая маркировка импортных конденсаторов

Она состоит из пятерки полос. Начальная пара – емкостной показатель в пФ, следующая полоса – число нулей, четвертая – показатель возможного отклонения, пятая – номинал напряжения.

Данные о конденсаторах на схемах призваны информировать работающих с ними специалистов о видах используемых устройств и их основных характеристиках

При выборе используемого элемента нужно обращать внимание на маркировку

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий