Как найти мощность электрического тока: формулы и расчёты

Суть явления

В цепи постоянного тока 1 VA является эквивалентом одного ватта (1 Вт). Мощность (P) (в ваттах) в цепи постоянного тока равна произведению напряжения (V) в вольтах и тока (I) в амперах:
P = VI

Вольт-ампер

В цепи переменного тока мощность и V•A означают одно и то же, когда нет реактивного сопротивления. Оно вводится, когда цепь содержит индуктор или конденсатор. Поскольку большинство цепей переменного тока содержат реактивное сопротивление, значение V•A превышает фактическую рассеиваемую или подаваемую мощность в ваттах. Это может вызвать путаницу в спецификациях для блоков питания.

Например, источник питания может быть рассчитан на 600 V•A. Это не означает, что оно может выдавать 600 Вт, если оборудование не имеет реактивного сопротивления. В реальной жизни номинальная P источника питания составляет от 1/2 до 2/3 реального показателя V•A.

Важно! При покупке источника бесперебойного питания, для использования с электронным оборудованием, включая компьютеры, мониторы и другие периферийные устройства, нужно убедиться, что спецификации V•A для оборудования используются при определении минимальных номинальных значений для него. Показатель V•A номинально в 1,67 раза (167 %) больше потребляет мощности в ваттах

Мощность

Что такое мощность электрического тока

Отличие в том, что сила влияет на физические действия, то есть выполняется работа. Если она проделана за указанное время, то через эти два параметра можно вычислить значение мощности.

В случае с электричеством она бывает двух видов:

  1. Активная – превращается в энергию тепла, света, механических действий и т. д. Она измеряется в ваттах и вычисляется по формуле 1 Вт = 1 В х 1А. Но на практике этот показатель чаще всего выражен в киловаттах и мегаваттах.
  2. Реактивная – нагрузка, возникающая из-за колебаний внутри электромагнитного поля. Единица измерения – вольт-амперы (ВА), они вычисляются как Q=U x I x sin угла. Последнее означает изменение фазы между током и снижением напряжения.

На практике отличия обоих видов лучше всего рассмотреть на примере элементов для нагревания и электродвигателей. ТЭНы собраны из материала с высоким сопротивлением, поэтому всю полученную электроэнергию они превращают в тепловую. Электродвигатель же имеет детали, обладающие индуктивностью, то есть часть тока возвращается в сеть и может отрицательно влиять на нее, создавая перегрузки.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах. Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток. Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как это работает?

На устройствах старого образца присутствует возможность установки мощности, при этом температурный показатель спирали мог повышаться до тех пор, пока не происходил перегрев, и вейпер получал знакомый многим «гарик», то есть, вкус жженной ваты. С приходом ТК, в независимости от выставленной мощности, мод не повысит температуру выше возможной. Это реализовано благодаря специальному чипу, который размещен на плате устройства. Чтобы не допустить перегрева, выжидается, пока спираль не охладится, а как только температура снижается, мощность устройства поднимается. При этом вейпер не замечает перемен мощности, и может с удовольствием парить!

Температурный контроль работает с такими металлами, как титан, никель и другими, способными плавно менять сопротивление. Когда койл устанавливается в бак, устройство запоминает исходную температуру спирали, и, в процессе нагревания плата способна высчитывать, как изменился показатель.

Как правило, в характеристиках мода указывается, с какими намотками работает термоконтроль. Температурный контроль настраивает температуру, которая может варьировать от 100°С и выше.

До реализации функции ТК, койлы изготавливали из кантала. Сопротивление этого металла при нагреве не изменяется, поэтому на спираль постоянно подается одинаковая мощность. При работе температурного контроля в сочетании с никелем или титаном, уровень сопротивления меняется в зависимости от нагрева. Поэтому использовать спирали из кантала при включенной опции ТК не представляется возможным!

Расшифровка величин

Общая величина Ватт относится к фамилии вышеупомянутого шотландского ученого. Далее от этих названий могут быть Киловатты, Мегаватты, Гигаватты и так далее. Ниже приведены три основные величины, которые используются повсеместно в природе и бытовой технике.

Ватт

Эта единица обозначается буквами Вт или W. Эту единицу изобрёл британский физик Джеймса Уатта, который первый изобрел паровую установку.

Перевод в другие величины

В 1960х годах прошлого века данная единица была включена в систему СИ.

Самым главным параметром всех бытовых приборов будет расходуемая ими мощность, поэтому в паспорте изделия всегда указывается величина в Ваттах. Многие люди, особенно в возрасте, используют привычные лошадиные силы для расчетов.

Киловатт

В ГОСТе указано, что обозначение КВт — это главная величина для ведения учета потребляемой электроэнергии.

Основной ее плюс — это практичность применения. Итоги при ее применения получаются самыми допустимыми. Но по необходимость можно воспользоваться такими величинами как, мегаватт, гигаватт.

В правилах также присутствуют указания по написанию Киловатов. Полное наименование пишется обязательно с большой буквы. Если применяется сокращенное название английскими или русскими символами, то буквы могут быть любого размера.

Мощность бытовых приборов

Киловатты всегда указываются на корпусе бытовых приборов. В основном производители применяют английские буквы W.

Мвт

Мегаватт (аббревиатура МВт) — будет десятичной кратной величиной единицы мощности в интернациональной системе. Такие обозначения достаточно редко указываются в документации к электроприборам. Основное предпочтение отдают Вт или КВт. Еще больше официальных значений можно найти в таблице международных интернациональных единиц СИ.

Ниже описано что больше Киловатт или Мегаватт.

Перевод V•A в Ватты

Для правильного определения размера, например, источника питания важно понимать отличие ватт от вольт ампер. Реальная мощность, измеряемая в ваттах — это часть потребляемого потока энергии и связана с сопротивлением в электрической цепи

Примером этого является нить накала в лампочке.

Перевод вольт ампер

Реактивная мощность, измеряемая в VAR или «вольт ампер реактивный» — это часть потока P накопленной энергии. Накопленная энергия связана с наличием индуктивности и емкости в электрической цепи. Кажущаяся мощность измеряется в V•A, представляет собой математическую комбинацию реальной и реактивной P.

Геометрическое соотношение между кажущейся, реактивной и реальной мощностью определяется треугольником P. Математически реальная мощность (Вт) связана с кажущейся (V•A) с использованием числового отношения, называемого коэффициентом мощности (PF), который выражается в десятичной форме и имеет значение от 0 до 1,0. Для многих новых типов ИТ-оборудования, таких как компьютерные серверы, PF составляет 0,9 и выше. Для устаревших персональных компьютеров (ПК) — это значение может быть 0,60 — 0,75.

Поскольку многие типы оборудования рассчитаны на P в ваттах, важно учитывать PF при выборе размера ИБП

Если не принимать PF во внимание, можно уменьшить размер необходимого ИБП. Например, единица оборудования с мощностью 525 Вт и коэффициентом мощности 0.7, который нужно умножать на мощность, определяет минимальную мощность с нагрузкой 750 V•A

750 V•A = 525 Вт / 0,7

Если ИБП рассчитан на 75%, то получится ИБП с номиналом 1000 V•A (750 ВА / 0,75 = 1000 V•A).

Плюсы и минусы контроля температуры

Каждое устройство имеет ряд отличительных особенностей, как положительных, так и отрицательных

Самое важное преимущество девайса с температурным контролем – полное предотвращение горения наполнителя, или «гарика»

Со временем этот казус случался со всеми без исключения электронками

Причина могла заключаться или в том, что обладатель просто не обратил внимание на заканчивающуюся жидкость, или выставил мощность на максимум, либо же залил жижи меньше положенного

В итоге всегда происходило одно: неприятный привкус гари, и как потенциальная опасность – вред здоровью. К примеру, никель при перегреве может выделяют вредные и опасные соединения для организма.

Именно для предотвращения этих неприятных инцидентов придумали контроль температуры. Даже если Вы не увидели, что жижа на исходе, ТК снизит подаваемую мощность на койл. В самом худшем случае Вы получите отсутствие пара или его очень малую концентрацию.

Второй немаловажный момент – увеличение работоспособности девайса и службы эксплуатации атомайзеров. Так как температурный контроль не дает разгораться спирали до критической отметки, то физически исключается возможность переизноса. Продолжительность службы батареи возрастает также. Мощность подстраивается под разный режим нагрева койла и так увеличивает длительность работы аккумулятора.

Характеристика ватт-часов

В бытовой сфере часто используется очень похожая на ватт по названию единица измерения — ватт-час. Но между обычными ваттами и ватт-часами существует большая разница. Не стоит одну единицу принимать за другую. Их невозможно и переводить друг в друга. Ватт-час — это единица, с помощью которой измеряется количество выработанной или потребленной энергии, а не скорость ее потребления.

Чтобы можно было понять разницу между ваттом и ватт-часом, можно рассмотреть пример использования обычного телевизора мощностью в Вт, равной 250:

  1. Если в доме больше ничего не будет включено, то через 60 минут показания счетчика увеличатся на 250 ватт-часов (0,25 киловатт-часов).
  2. Если при таких же условиях телевизор будет работать три часа подряд, то на счетчике набежит уже 750 ватт-часов (0,75 киловатт-часов). Очевидно, телевизор потребляет 250 Вт в час. Количество используемой им энергии, измеряемое в ватт-часах, зависит от времени работы.

Примеры в природе и технике

ВеличинаОписание
10−9 ваттИзлучение мощностью примерно в 1 нВт падает на участок поверхности Земли площадью 1 м² от звезды яркостью в +1,4 звёздной величины.
5⋅10−3 ваттТакую мощность (или близкую к ней) имеет излучение обычных лазерных указок, сравнительно безопасное для человеческого зрения.
1 ваттПримерная мощность передатчика обычного мобильного телефона.
1⋅103 ваттНебольшой обогреватель. Примерная мощность излучения, падающего на 1 м2 поверхности Земли от Солнца, находящегося в зените. Средняя годовая мощность, потребляемая одним домашним хозяйством в США (среднее потребление энергии — примерно 8900 кВт•ч/год).
6⋅104 ваттЛегковой автомобиль с двигателем в 80 лошадиных сил.
1,2⋅107 ваттЭлектропоезд Eurostar.
8,212⋅109 ваттМощность при пиковых нагрузках крупнейшей в мире АЭС Касивадзаки-Карива (Касивадзаки, Япония).
2,24⋅1010 ваттПроектная мощность крупнейшей в мире ГЭС «Три ущелья» (Санься, Китай).
1012 ваттПиковая мощность среднего удара молнии.
1,9⋅1012 ваттСредняя оценочная электрическая мощность, потреблявшаяся человечеством в 2007 году.
1,5⋅1015 ваттРекордная мощность импульсного лазерного излучения, достигнутая на установке Nova в 1999 году. Энергия в импульсе составляла 660 Дж, длительность импульса — 440⋅10−15 с.
1,74⋅1017 ваттИсходя из среднего значения облучённости на поверхности Земли в 1,366 кВт/м² общий поток солнечного излучения на поверхности Земли составляет примерно 174 ПВт. Если бы Земля не переизлучала эту энергию в пространство, она становилась бы массивнее на 1,94 кг каждую секунду.
3,828⋅1026 ваттПолная мощность излучения Солнца оценивается учёными в 382,8 ИВт, что более чем в два миллиарда раз больше, чем мощность излучения, падающего на поверхность Земли. Другими словами, вследствие термоядерных реакций в центре Солнца наше светило ежесекундно теряет массу в размере 4 260 000 тонн.

Таблицы соотношений ампер, вольт, ватт, ом

Постоянный ток

ВольтыВатты : Амперы = Амперы х Омы = √ (Ватты х Омы)
Амперы(Ватты : Вольты) = √(Ватты : Омы) = Вольты : Омы
ОмыВольты : Амперы = Ватты : (Амперы)2 = (Вольты)2 : Ватты
ВаттыАмперы х Вольты = (Амперы)2 х Омы = (Вольты)2 : Омы

Переменный ток

ВольтыВатты : (Амперы х cos Ψ) = Амперы х Омы х cos Ψ = √(Ватты х Омы)
АмперыВатты : (Вольты х cos Ψ) = 1/cos Ψ х √(Ватты : Омы) = Вольты : (Омы х cos Ψ)
ОмыВольты : (Амперы х cos Ψ) = Ватты : (Амперы)2 • cos2 Ψ = (Вольты)2 : Ватты
ВаттыВольты х Амперы х cos Ψ = (Амперы)2 х Омы х cos2 Ψ = (Вольты)2 : Омы

Для cos Ψ можно брать в приблизительных подсчетах: для осветительных установок 0,85, для моторных установок 0,7

Электрическое сопротивление

т. е. проводник длиной в l метров и сечением F кв. миллиметров имеет сопротивление ρ • F/l омов
Здесь ρ — постоянная, зависящая от материала и температуры проводника — удельное сопротивление;
величина l/ρ — называется удельной электропроводностью

В таблицах помещены данные относительного сопротивления различных веществ, от величины которого зависит их пригодность в качестве проводников или изоляторов

Металлы для проводников

Сопротивление в омах на 1 м длины и 1 мм2 сечения; при 20° С

Алюминий0,029Ртуть0,058
Алюминиевая бронза0,13Серебро0,016
Бронза0,17Сталь мягкая0,1-0,2
Железо0,086Сталь закаленная0,4-0,75
Медь чистая0,017Свинец0,21
Медь обыкновенная0,018Тантал0,12
Никкель0,070Цинк0,06
Платина0,107

Материалы для сопротивлений

Графит4,0-12,0Кокс50
Константин0,50Круппин0,85
Манганин0,43Нейзильбер0,16-0,4
Никкелин0,40Никкель0,34
Реотан0,45Уголь60

Изолирующие материалы

Сопротивление в мегомах (1 мегом — 1000000 омов) куба в 1 см3

Кварц плавленный5.1012Церезин5.1012
Парафин3.1012Эбонит1.1012
Прессшпан1.105Каучук1.108
Стекло5.107Сера1.1011
Черное дерево4.107Слюда белая3.1010
Линолеум1.107Янтарь5.1010
Тополь парафинированный5.105Клен парафинированный3.104
Кварц перпендикулярно к оптической оси3.1010Кварц параллельно к оптической оси1.10
Шеллак1.1010Целлулоид белый2.104
Сургуч8.109Шифер1.102
Воск желтый2.109Фибра красная5.102
Фарфор неглазированный3.108

Жидкие сопротивления

Сопротивление в омах куба в 1 см3 при 15° С

Серная кислота 5%4,80Серная кислота 10%2,55
Серная кислота 20%1,53Серная кислота 30%1,35
Аммиак 1,6%15,22Аммиак 8,0%9,63
Аммиак 16,2%15,82Раствор поваренной соли 5%14,92
Раствор поваренной соли 10%8,27Раствор поваренной соли 15%6,10
Раствор поваренной соли 20%5,11Раствор цинкового купороса 5%52,4
Раствор цинкового купороса 10%31,2Раствор цинкового купороса 15%24,1
Раствор цинкового купороса 20%21,3Раствор медного купороса 5%52,9
Раствор медного купороса 10%31,3Раствор медного купороса 15%23,8
Раствор сернокислого магния 5%83,0Раствор сернокислого магния 10%23,2
Раствор сернокислого магния 15%20,8Раствор сернокислого магния 20%21,0

Сопротивление пробою

Переменный ток напряжением в 20 000 вольт пробивает изолирующий слой следующей толщины, мм:

Воздух34Льняное масло7,5
Парафин каменноугольный2,2Трансформаторное масло2,0
Вулканизированный каучук1,2Невулканизированный каучук0,85
Церезин0,65Озокерит0,65
Гуттаперча0,34Парафин0,5
Скипидар0,5Воск0,25
Кабельная масса0,2Масса для заливки муфт0,45

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Как найти реактивную мощность

Расчет тока по мощности и напряжению

Мощность электрического тока

Расчет мощности трехфазной сети

Активная реактивная и полная мощность

Дополнительные функции

Блокировка / разблокировка сопротивления в режимах VT

Нажмите основную кнопку три раза и войдите в меню. Нажмите кнопку «-» 2 раза, и третья строка начнет мигать. Нажмите кнопку «+», чтобы заблокировать или разблокировать сопротивление спирали. При появлении знака замка сопротивление заблокировано.

Обратите внимание: В этом режиме устройство будет работать на фиксированном сопротивлении даже при замене атомайзера. Перед подключением другого атомайзера обязательно разблокируйте сопротивление и сбросьте значение путём нажатия основной кнопки

Установка новых испарителей

Если сопротивление установленного атомайзера превышает ранее определённый показатель хотя бы на 5% (в режиме VT при разблокированном сопротивлении), на дисплее появится уведомление «new coil right, same left». Подтвердите выбор нажав на соответствующую кнопку: «-» — если Вы используете тот же атомайзер, «+» — при смене нагревательного элемента.

Регулировки мощности в режимах VT

В режимах VT можно задать максимальную мощность, подаваемую на спираль. Нажмите основную кнопку три раза и войдите в меню. Нажмите кнопку «-» 1 раз, и вторая строка начнет мигать. Затем нажмите кнопку «+», чтобы настроить мощность и основную кнопку, чтобы сохранить изменение.

  1. Максимально допустимое сопротивление в режиме VТ – 1.5 Ом. Если же сопротивление будетпревышать допустимое значение, устройство автоматически переключится в режим VW.
  2. При использовании канталовой спирали в режиме VТ, устройство будет автоматически переключаться в режим VW после работы в течение 2 секунд.

Режим VW (вариватт)

В VW режиме мощность можно регулировать от 1 Вт до 75 Вт кнопками «+» и «-». Длительное нажатие кнопки быстро уменьшит или увеличит мощность.

Режим Bypass (мехмод)

Режим мехмода это режим прямой подачи напряжения от батареи на атомайзер. В этом режиме при сопротивлении спирали в диапазоне 0.1 — 3.5 Ом, устройство будет работать должным образом.

Нажмите основную кнопку три раза для перехода в меню. Нажмите кнопку «-» 3 раза, и четвертый ряд будет мигать. Теперь нажмите правую кнопку дляпереключения между AMP, PUFF и TIME. Для обнуления значений

зажмите основную кнопку.

Советы по использованию испарителей VТ

  • Перед первым использованием смочите испаритель жидкостью во избежание подгорания хлопкового наполнителя.
  • Если заправленный атомайзер не был в использовании более суток, возможно появление избыточной жидкости в испарителе. Чтобы избавиться от неё зажмите основную кнопку и выдуйте жидкость через мундштук.
  • Для защиты хлопка от подгорания, пожалуйста, не используйте устройство без жидкости.

Дольные и кратные единицы

Если мощность слишком велика или, наоборот, мала, то использование в качестве единицы измерения обычного ватта будет неудобным. В этом случае на помощь придут кратные и дольные единицы. Если говорить только об одной лампочке и о малых промежутках времени, то мощность будет не очень большой. Например, за час такой осветительный прибор может вырабатывать около 100 джоулей энергии.

Но когда требуется определить силу не одной, а нескольких таких лампочек (десятка, сотен, тысяч), и не за один час, а, например, за месяц или год, то число получится громоздким. Целесообразно использовать не ватты, а их кратные обозначения — киловатты (кВт), мегаватты (МВт), гигаватты (ГВт).

Значение кратных величин легко определить по префиксам, которые используются так же, как и в случаях с большинством других единиц. Приставка «кило» указывает на 1000 единиц, «мега» — на миллион, «гига» — на миллиард.

Чаще всего на практике используются киловатты. В одной такой кратной единице насчитывается тысяча ватт. То же самое касается и дольных долей, использующихся в тех случаях, когда необходимо указать малую мощность, которая в десятки, сотни, тысячи и миллионы раз меньше 1 Вт. Например:

  • десятая часть вата — это дециват;
  • сотая часть — сантиватт;
  • тысячная — милливатт.

Оптимальные ватты для парения

Что ж, выше мы уже разобрались что такое Ватты, но у многих всё-таки возникает вопрос — сколько Ватт выставить на устройстве, чтобы оптимально парить на испарителе сопротивлением 0.5 Ом/0.3 Ом, или любых других сопротивлениях

На этот вопрос у меня тоже есть ответ — во-первых, нужно понимать, что сопротивление испарителя абсолютно не важно, при выставлении Ватт. Собственно, в этом и вся «фишка» Ватт, вы выставляете нужное вам число Ватт, а ваше устройство подаёт на испаритель нужное количество тока, чтобы он разогрелся до нужной температуры за указанное время

Иными словами, ваш «умный» вейп всё высчитывает сам и ему абсолютно всё равно какое у вас сопротивление испарителя — если выставите, например, 30 Ватт и поставите испаритель на 0.3 Ома, а затем на 0.5 Ома — то никакой разницы не будет, ваше устройство само всё высчитает и сделает так, чтобы оба этих испарителя нагревались с одинаковой скоростью

. Собственно, в этом и вся «фишка» Ватт, вы выставляете нужное вам число Ватт, а ваше устройство подаёт на испаритель нужное количество тока, чтобы он разогрелся до нужной температуры за указанное время. Иными словами, ваш «умный» вейп всё высчитывает сам и ему абсолютно всё равно какое у вас сопротивление испарителя — если выставите, например, 30 Ватт и поставите испаритель на 0.3 Ома, а затем на 0.5 Ома — то никакой разницы не будет, ваше устройство само всё высчитает и сделает так, чтобы оба этих испарителя нагревались с одинаковой скоростью.

Но зачем тогда нужны разные сопротивления и т.д., если разницы никакой нет? Дело в том, что скорость разогрева вашего испарителя зависит не только от сопротивления, а ещё и от материала из которого он сделан. Вы уже наверно знаете, что для спиралей в вейпе используют в основном нержавейку и нихром, так вот — нержавейка нагревается быстрее нихрома, поэтому если вы подадите 30 Ватт на испаритель сделанный из нержавейки, он нагреется быстрее, чем если вы подите те же 30 Ватт на испаритель из нихрома.

Пора заканчивать с теорией, надеюсь, я всё понятно объяснил, а теперь всё-таки можно ответить на вопрос — сколько ватт выставлять в вейпе?

А ответ очень прост — нужно выставить такую мощность, на которой вам будет комфортно парить.

И нет какого-то магического числа — для каждого испарителя и каждого человека эта цифра разная и вам нужно найти оптимальную для себя. Ваша цель, это выставить такую мощность, при которой вам будет комфортно парить, вот и всё.

Ну, а если вы всё же хотите чисел, то для большинства стандартных испарителей и спиралей, которые продаются в вейпшопах оптимальная мощность будет в диапазоне от 30 до 80 Ватт

Сколько ампер потребляет устройство

Отвечая на вопрос, как узнать амперы, стоит указать, что это можно при помощи устройства под названием амперметр, также как рассчитать ватты зная вольт и ампер. Простым единичным измерением можно не только узнать количество потребляемой энергии, но и перевести полученное значение в другие величины, скорректировать планировку проводки, купить более мощный электросчетчик и другое. Также можно узнать эту информацию, открыв руководство к эксплуатации.

Обратите внимание! Нередко, все необходимые данные прописаны на самой коробке или технических характеристиках на сайте производителя. Часто информация указана в квт и ее посредством конвертора легко можно перевести в ампераж

Еще одним простым вариантом, как определить потребление энергии и ампераж, будет изучение электросчетчика или автоматического выключателя потребителя. Но, в таком случае, необходимо подключать только один прибор к сети.

В противном случае, узнать и рассчитать данные показатели электроэнергии будет почти невозможно. Интересно, что в новых моделях электросчетчика подобная информация имеет место быть о каждом подключенном аппарате в сети.

Таблица амперного потребления ламп

Как перевести Ватт в другие единицы измерения

Ватт является главной единицей, поэтому при переводе в другие необходимо приравнять используемые величины к Ваттам.

Самые популярные величины:

  • Ватты (Вт);
  • Киловатты (кВт);
  • Джоуль (работа);
  • Лошадиные силы (л. с.).

Например, чтобы перевести Вт и КВт, нужно поделить полученную в Вт мощность на 1000:

100 Ватт = 100/1000 = 0,1 Киловатт.

Чтобы выполнить перевод КВт в Вт нужно:

50кВт = 50*1000 = 50000 Вт.

В современное время нет необходимости проводить постоянные вычисления и умножения, чтобы перевести одну величину в другую. Существует множество конверторов и калькуляторов, которые за доли секунды выполнят уравнение.

Но тем людям, которые каждый день работают с электрикой, необходимо уметь выполнять переводы и расчеты. Неправильно подсчитанная мощность и некорректное подключение электроприборов может привести к короткому замыканию или пожару.

Лошадиные силы

В заключении необходимо отметить, все приведенные выше величины необходимо знать, так как они постоянно используются в повседневной жизни. Поэтому не зря их изучают на школьных уроках. Для упрощения расчетов можно использовать онлайн калькуляторы.

Краткие о напряжении, токе и мощности

Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.

В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:

P=I*U

Этих понятий достаточно для правильного перевода.

Как перевести ватты в киловатты

Бытовые электроприборы имеют разную мощность. Она колеблется от нескольких Вт до нескольких тысяч ватт. Для удобства расчета приводят к единому значению. Обычно это киловатт, обозначается кВт.

Для удобства перевода одной единицы в другую существуют различные программы. Но перевод из одной величины в другую несложно выполнить самостоятельно.

Для наглядности произведем несколько расчетов. Полученный перевод из Вт в кВт сведем в таблицу.

Вт5901002505007501000250010500
кВт0,0050,090,10,250,50,7512,510,5

Зачастую требуется произвести обратную функцию. Перевод из Квт в Вт. Для этого мощность в киловаттах необходимо умножить на 1 000. Произведем вычисления и для наглядности сведем в таблицу.

кВт52,510,850,40,250,080,007
Вт5 00025001000850400250807

На промышленных предприятиях используются потребители электроэнергии мощностью в несколько тысяч киловатт. Для удобства введено понятие мегаватт, обозначается как мВт. Приставка «мега» обозначает 1 000 000. То есть в 1 мВт содержится 1 000 000 Вт, или 1 000 кВт.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий