Радиотехника для начинающих

Введение

Сегодня электрические устройства помогают управлять АЭС, самолётами, кораблями, готовить пищу, запускать спутники и исследовать дальние миры. Поэтому что такое электроника в нынешнее время должны знать почти все. Тем более что электричество изучают в школах и университетах.

С точки зрения обычного человека электроника это отрасль, которая поставляет полезные приборы для дома и работы, а с точки зрения радиолюбителя — целая наука, которая объединяет в себе успехи математики, физики, химии и производственных технологий. Если тебе интересна электроника, то ты попал на правильный сайт.

На первых порах электроника может показаться тебе крутой, неприступной горой, которая завораживает своими невероятно красивыми снежными пиками. Возможно, ты сейчас думаешь, что только избранные могут осилить изучение электроники. Я считаю иначе. Если кто-то смог её освоить, то и ты сможешь. Надо только разобраться как устроен мир электроники, ухватить общие идеи, а затем постепенно углублять знания.

Если сто лет назад электроники не существовало и информация была в основном об электричестве и электрических машинах, то сегодня электроника представляет огромный мир с множеством направлений. Поэтому можно слегка с грустью, но правдиво заметить, что всё изучить невозможно и хвататься за всё подряд будет плохим решением. 

В начале радиолюбительского пути особенно трудно. Сейчас доступно много информации по электронике и глаза разбегаются с чего начать и с какого края к ней подойти. Я сам был на твоём месте и честно скажу — голова порой кипела. Поэтому я и решил написать путеводиль по электронике для начинающих радиолюбителей. С его помощью я хочу помочь тебе ступить на радиолюбительский путь и войти в мир электроники. 

Почему следует прочитать мой путеводитель?

Традиционно изучение электроники начинается снизу вверх: сначала рассказывается что такое заряд, потом — что такое напряжение и ток, затем описываются резисторы, конденсаторы и катушки индуктивности, потом диоды, транзисторы, операционные усилители, различные виды микросхем и тому подобное. 

В этой книге я поставил всё с ног на голову. И сделал это намеренно. Подумай о том, как ты разбираешься в чем-то новом для себя? Например, увидел необычное устройство, заинтересовался его конструкцией, стал изучать как оно работает, затем как оно устроено, из чего состоит и как связаны между собой его части. Постепенно, шаг за шагом, ты углубляешься и твои знания становтся более глубокими. Ты как будто спускаешься с горы к её подножию, продвигаясь от целого к деталям. Так устроено наше мышление. Сначала мы создаем общую картину мира, затем разбиваем её на части и изучаем каждую часть по отдельности. 

Очевидно, что спускаться с горы проще, чем подниматься на вершину. Поэтому я решил, что вместо изучения резисторов начнём сразу с цифровой техники и микроконтроллеров. Затем посмотрим, как устроены отдельные блоки цифровой техники, спустимся до логических элементов и бинарной арифметики, а затем постепенно перейдём к аналоговой электронике и рассмотрим как на самом деле устроены те же самые логические элементы, но с точки зрения аналоговой электроники.

Затем спустимся ещё на ступеньку ниже и посмотрим как устроены разные электронные компоненты и на основе каких физических принципов они работают. Попутно будем разбирать разные физические принципы и понятия.  Я считаю, что благодаря этому легче понять основные принципы и получить хорошее основание для дальнейшего самостоятельного изучения электроники.

По ходу повествования лишние подробности будут отбрасываться, чтобы сделать акцент на самые важные и основополагающие идеи. На первых порах много деталей только помешают ухватить самые важные идеи. Я надеюсь, что, отбросив лишнее, мне удастся внести ясность, сделать мой рассказ понятным и занимательным. Пусть меня за это простят опытные радиолюбители, профессиональные инженеры и академики «электронных» наук. Эта книга не для вас. Но вы можете помочь мне сделать её лучше, указав на ошибки в тексте.

Если бы у меня была такая книга в начале моего пути — я был бы счастлив. Пусть мой путеводитель превратит твой стартовый путь в электронику в путешествие по скоростному шоссе. Поехали!

Читай дальше: Как работает цифровая электроника

Как проверить напряжение мультиметром

черный провод мультиметра необходимо подключить к разъему „COM”;
красный провод необходимо подключить к разъему для измерения напряжения „V” (Внимание! Подключение проводов иным образом может привести к повреждению прибора!)
мы ожидаем получить значение около 1,5 вольта, поэтому ручку мультиметра устанавливаем на значение «20» в области DCV или V- (буква V с тире, означает постоянный ток) и если это необходимо, включаем прибор (некоторые модели включаются при повороте ручки), при этом мультиметр должен показать 0;
металлическими наконечниками щупов мультиметра касаемся выводов батарейки… но какой куда? Попробуйте обе комбинации – результат должен быть один и тот же, только в одном случае будет отражаться положительное число, а в другом случае то же число, но только со знаком минус.
считываем значение – в нашем случае напряжение новой батарейки составляет 1,62 вольт;
выключаем мультиметр.

ВНИМАНИЕ! Во время проведения измерений, чтобы не повредить мультиметр, всегда выбирайте диапазон измерения большее максимально ожидаемого результата! Если мы не знаем чего ожидать, то безопаснее будет выбрать более высокий диапазон и в дальнейшем уменьшить его для получения максимально точного результата. Поскольку мы научились измерять напряжение мультиметром, то давайте померим и другие батарейки/аккумуляторы! Мы для тестирования выбрали:

Поскольку мы научились измерять напряжение мультиметром, то давайте померим и другие батарейки/аккумуляторы! Мы для тестирования выбрали:

  • заряженный аккумулятор 1,2 вольта, размер АА — мультиметр показал 1,34 вольт.
  • частично разряженный аккумулятор Ni-Mh (используемый в камере) — мультиметр наш показал 1,25 вольт.

Далее нам понадобятся 4 батарейки формата ААА, кассета для 4 батареек и макетная плата (что такое макетная плата и как ею пользоваться можно узнать здесь). Установим наши 4 батарейки в кассету. Затем концы проводов кассеты вставим в отверстия макетной платы так, как это показано на следующих фото:

 

Следующим шагом будет подготовка соединительных проводов (перемычек), их еще называют джамперами. Это такие провода, которые будут объединять отдельные радиодетали между собой на макетной плате.

Конечно же, какое-то количество джамперов входит в комплект вместе с макетной платой. Но если их у вас нет, то не беда, их можно сделать самим.

Для этого нам понадобится: компьютерный кабель, так называемая витая пара, ножницы или острый нож.

Для начала необходимо снять изоляцию с кабеля. Внутри кабеля мы видим скрученные между собой тонкие провода. Следующим шагом будет нарезка проводов необходимой длинны. И последнее что необходимо – это зачистить с обоих концов изоляцию примерно на 1 см.

 

Далее. Нам понадобится 4 короткие перемычки (для соединения линий питания платы) и 2 длинные, лучше если они будут красного и синего цвета.

Теперь мы на макетной плате соберем нашу первую схему. Возьмем резистор 22кОм с цветными полосками (красный-красный-оранжевый-золотой). А какое реальное сопротивление данного резистора? Давайте проверим это мультиметром!

Несколько советов начинающим

На первых этапах невозможно не совершать ошибки, это неизбежная часть обучения. Но тем не менее было бы жестоко не поделиться советами, которые сэкономят вам время, деньги и нервы.

Берите готовые модули, чтобы первое время не паять. Когда я спалил свой первый модуль Bluetooth, это на некоторое время отбило мне желание работать с Arduino.
Не нужно сразу покупать много комплектов и деталей. Если в арсенале светодиодная матрица, камера, датчик шума и другие игрушки, становится сложно закончить хотя бы один проект

А как можно скорее получить первый результат — это очень важно, чтобы не потерять энтузиазм по пути к достижению к цели.
При выборе проекта ориентируйтесь на его уровень: не стоит браться за сложный проект. Скорее всего, это превратится в простое копирование, которое не принесет вам никакого удовольствия

Самое главное на этом этапе — удачно выбрать проект, в противном случае у вас может пропасть желание заниматься этим дальше. (А дальше — только интереснее!)
Очень полезна будет макетная плата. Для начала лучше взять побольше: с ней легче работать, вы не запутаетесь в проводах и сможете лучше разобраться в процессе. Сэкономленные 60 рублей счастья не принесут, а с большой платой будет в разы приятнее и эффективнее работать.

Макетная плата

Шаг 4: Стандартные или общие значения резисторов

Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы  малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.

Терпимость 20% E6,

Терпимость 10% E12,

Терпимость 5% E24 (и обычно 2%-я терпимость),

Терпимость 2% E48,

E96 1% терпимости,

E192 0,5, 0,25, 0,1% и выше допуски.

Стандартные значения резисторов:

Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68

E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953

E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976

E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988

При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.

Продолжение следует

Знакомство с FPGA iCE40 UltraPlus Mobile Development Platform от фирмы Lattice Semiconductor

Из песочницы

Введение

Всем доброго времени суток, друзья! Недавно на работе обзавелись новенькой навороченной платой iCE40 UltraPlus Mobile Development Platform от фирмы Lattice Semiconductor. Со слов разработчиков на официальном сайте iCE40 UltraPlus MDP — это плата, на которой расположены 4 ПЛИС iCE40 UltraPlus, каждая из которых управляет своим набором периферии. В набор входят:

  • мобильный дисплей с разрешением 240×240 с интерфейсом MIPI DSI;
  • датчик изображения с разрешение 640×480 (OVM7692);
  • малопотребляющие микрофоны в количестве 4 штук;
  • BLE модуль для беспроводной передачи данных;
  • программируемая SPI Flash память;
  • пак различных датчиков (давления, компас, гироскоп и акселерометр);
  • ну и всякие кнопочки и лампочки.

Вся круть данного кита заключается в том, что на нем с помощью специальных программных пакетов можно разворачивать нейронные сети для работы с видео и звуком. И это не говоря уже о том, что ПЛИСы фирмы Lattice являются низкопотребляемыми, малогабаритными и достаточно дешевыми.

Простой металлоискатель

Металлоискатель на микросхеме DD1 K561ЛE5, выполненный по традиционной схеме сравнения частот опорного и поискового генераторов [Р 8/89-65], показан на рис. 12.

Рис. 12. Схема металлоискателя.

Частота опорного генератора определяется емкостью конденсатора С1 и суммарным сопротивлением резисторов R1 и R2.

Частота поискового генератора зависит от параметров LC-контура поисковой катушки (L1, С2). При приближении поисковой катушки к металлическому предмету ее индуктивность меняется, изменяя частоту генерации поискового генератора.

Сигналы с обоих генераторов через развязывающие конденсаторы С4 и С5 поступают на диодный детектор, выполненный по схеме удвоения напряжения.

Нагрузкой детектора является высокоомный телефонный капсюль BF1, и в нем выделяется сигнал разностной частоты. При использовании низкоомного телефонного капсюля может потребоваться дополнительный каскад усиления. Конденсатор С6 шунтирует на общий провод высокочастотные составляющие смешиваемых сигналов.

Поисковая катушка размещена внутри алюминиевого или медного незамкнутого кольца диаметром 200 мм. Диаметр трубки — 8 мм. Для намотки использован провод, например, ПЭЛШО диаметром 0,5 мм.

Количество витков определяется по принципу «сколько войдет». Выводы катушки присоединяют к схеме, а саму трубку соединяют с общей шиной.

Налаживание металлоискателя заключается в установке частоты опорного генератора до появления в телефонном капсюле звуковых сигналов низкой частоты. При этим, возможно, придется подобрать емкость конденсатора С1 или С2.

Шаг 6: Последовательно-параллельное соединение резисторов

Резисторы соединяются либо последовательно, либо параллельно. Для определения полного сопротивления «сборки» используется одно из двух уравнений.

При подключении резисторов последовательно их значения просто складывают. Так, например, если нужно получить сопротивление 12.33kΩ, берём резисторы на 12kΩ и 330Ω и соединяем их последовательно.

Расчёт величины сопротивления резисторов соединённых параллельно имеет немного другой вид (смотри рисунок).

Примеры применения резисторов:

Одно из основных применений резистора – ограничитель тока. Резистор является основным элементом, который не позволяет сгорать светодиодам (как пример) при подаче на них питания. При подключении резистора последовательно с LED, ток, протекающий через резистор, ограничивается до «безопасного значения»

Обратите внимание на схему, приведенную ниже. Резистор R соединён последовательно со светодиодом

Для расчета значения резистора необходимо рассматривать прямое напряжение (VF) и максимальный прямой ток (I). Прямое напряжение — напряжение, которое требуется для работы светодиода (варьируется между 1.7 В и 3.4 В в зависимости от цвета LED). Максимальный прямой ток для светодиодов обычно составляет около 20mA. Как только получено значение VF и тока, номинал резистора может быть вычислен согласно формуле:

R = (Vs — Vf) / I

где Vs – напряжение питания.

В нашем случае: 5-вольтовий источник питания, прямое напряжение – 1.8 В. Максимальный прямой ток светодиода 10mA (0,01 А):

R = (5 — 1.8) / 0,01 = 320 Ом.

Делители напряжения

Делитель напряжения – схема подключения резисторов, которая уменьшает величину напряжения. Используя всего два последовательно соединенных резистора, можно получить выходное напряжение, что будет лишь частью входного и будет зависеть от отношения этих двух резисторов.

Два резистора (R1 и R2) соединены последовательно, а источник напряжения (Vнар) подключён через них. Напряжение с Vвн может быть вычислено как:

Vвн = Vнар x R2 / (R1 + R2)

Например, если бы R1 был 1.7kΩ, и R2 был 3.3kΩ, то 5-вольтовое входное напряжение могло бы быть превращено в 3.3 В.

Нагрузочные резисторы (НР)

Нагрузочный резистор используется при необходимости смещения входного контакта микроконтроллера (MCU) к заданному состоянию. Один конец резистора соединён с контактом MCU, а другой конец соединен с высоким напряжением (обычно 5 В или 3.3 В).

Нагрузочные резисторы часто используются при взаимодействии через интерфейс с вводом переключателя или кнопкой. «НР» смещает входной контакт, когда переключатель открыт. Благодаря этому схема защищена от короткого замыкания.

Когда переключатель открыт, входной контакт MCU соединен через резистор с 5В. Когда ключ замкнут, входной вывод подключен непосредственно к GND (земле).

Значение нагрузочного резистора может быть неточным, но должно быть достаточно высоким (во избежании потери  мощности при пропускании через него 5В). Обычно значения составляет около 10kΩ.

Практика

До этого момента в статье была сплошь теория. Сейчас я предлагаю закрепить ее практической частью и собрать восьмибитный сумматор. Нам потребуется пара беспаечных макетных плат, несколько DIP-переключателей, светодиоды для индикации, токоограничивающие резисторы на 10 кОм и пара микросхем 74HC283.

Серия 74xx включает в себя микросхемы самого разного назначения. Это могут быть как сборки логических вентилей (например, 74HC04 — шесть инверторов в одном корпусе), так и полноценные АЛУ (74HC181). Помимо комбинационных схем, там есть и последовательностные: триггеры (74НС74), регистры (74НС373) и счетчики (74НС393).

Чтобы ориентироваться во всем этом номенклатурном разнообразии, я рекомендую не скачивать документацию на каждую микросхему в отдельности, а сразу найти целый справочник по всей серии. Например, есть справочник Texas Instruments в PDF.

Расположение выводов у микросхемы 74HC283 можно найти на странице 176 справочника, принципиальную схему и таблицы истинности смотри на страницах 390–391. И хотя это сумматор всего лишь на четыре бита, тут есть функция ускоренного переноса, а сами микросхемы можно объединять, собирая сумматоры на 8, 16 или даже 32 бит.

Хорошо видно, что схема здесь несколько отличается от той, что мы вывели ранее. В этом нет ничего необычного, одну и ту же функцию можно реализовать несколькими способами, и в производстве зачастую используют тот, который дешевле (по элементам) и лучше подходит для техпроцесса.

При этом все равно осталось некоторое сходство — его можно заметить при внимательном изучении. Например, элементы XOR от полусумматоров располагаются непосредственно перед выходом для значений каждого из разрядов.

Кроме того, можно понять, что значение для переноса вычисляется параллельно со значениями разрядов — для этого в микросхеме и присутствуют «лишние» элементы. Пожалуй, это самая сложная часть в статье. Поэтому, если у тебя возникли трудности, попробуй рассмотреть схему ускоренного переноса отдельно — это ИС 74HC182 на с. 338 (вот она, польза от полноценного справочника).

Сложение

Теперь, когда принцип работы микросхемы и назначение каждого ее вывода для нас не составляет секрета, можно собирать рабочий сумматор на восемь бит на макетных платах. Потребуется целый ворох проводов и перемычек, чтобы соединить все компоненты, так что главное здесь — быть внимательным и не допускать ошибок.

Как правило, значения в АЛУ попадают из регистров — самого быстрого типа памяти в компьютере. Здесь же я для удобства использую пару DIP-переключателей (левый верхний угол), чтобы можно было легко задавать нужные значения. По сути, это регистры А и В нашего протокомпьютера.

К сожалению, производитель переключателей явно не рассчитывал на такое применение, поэтому нумерация битов в каждом регистре мало того что начинается с единицы, так еще и идет в «неправильном» порядке, слева направо! Учитывай это, когда будешь работать со схемой.

Пара 74НС283 располагается по центру на нижней макетке, а результат операции отображается на линии из светодиодов (правый верхний угол). В левом нижем углу роль источника питания выполняет преобразователь USB — UART (другого способа подать стабильные 5 В я в тот момент не нашел).

Если схема была собрана без ошибок, то, задавая двоичное представление чисел на переключателях, ты сможешь наблюдать значение суммы на светодиодах. Примерно как на картинке выше.

Вычитание

Удивительно, но такую схему без каких-либо изменений и доработок можно использовать и для вычитания. Да, раньше я не говорил об этом ни слова, но такое действительно возможно. Если использовать представление отрицательных чисел в дополнительном коде, нам никак не нужно переопределять операцию сложения — все будет работать на имеющемся железе.

Наверняка ты уже представляешь, как на уровне цифровой схемы из положительного числа можно сделать отрицательное (в дополнительном коде). Действительно, достаточно только к каждому биту применить операцию NOT, а затем подать на вход сумматора вместе с единицей. Как видишь, подобное представление неочевидно с точки зрения человека, но очень удобно для реализации из набора логических вентилей.

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока, измеряемой в амперах.

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление, измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Примеры для вдохновения

Напоследок я хочу рассказать о нескольких крутых проектах, которые должны подогреть ваш интерес еще больше.

В свое время меня впечатлило устройство на базе Arduino, которое способно взломать навесной кодовый замок приблизительно за пять минут. При предварительном тесте замка количество комбинаций для перебора можно уменьшить в десять раз.

Устройство для взлома замка

Если вам больше нравятся роботы, то обратите внимание на собранную из труб ПВХ рыбу-робота. На мой вкус — выдающийся экземпляр робототехники

Его можно использовать для изучения водоема или же сделать аквариум с такими жильцами для собственного удовольствия. А для создания подобной рыбы нужно не так много: водонепроницаемые сервоприводы и контроллер Arduino.

Вполне реалистичная роборыба из трубы ПВХ

Из Raspberry Pi можно сделать самопальный компьютер или планшет, но это не очень-то захватывающе. По крайней мере, в сравнении со стратостатом на Raspberry Pi, который сделает замечательные снимки или запишет видео. Кое-кто даже запустил в небо Супермена, где ему и место. Супергерой достиг значительной высоты — 35,5 км.

Полет

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий