Делитель напряжения

Ограничения в применении

Из приведенных в таблице примеров расчетов хорошо видно, как значительно увеличиваются потери при уменьшении сопротивления цепи. Энергия расходуется впустую для нагрева окружающей среды. При большой мощности рассеивания приходится использовать принудительные системы охлаждения, пассивные радиаторы.

В приведенных расчетах не учитывалась нагрузка. Если добавить соответствующее реальным условиям сопротивление, образуются дополнительные потери в параллельной цепи.


Влияние сопротивления нагрузки

На первой части рисунка изображен типовой делитель, обеспечивающий выходное напряжение 5 V. При потреблении тока 0,01 А сопротивление нагрузки составит 0,5 кОм. Пользуясь формулой расчета для параллельной цепи, несложно выяснить суммарное значение R = 1/(1/R2 + 1/Rнагрузки) = 0,25 кОм. Это добавление уменьшит плановое значение Uвых до 3,46 V.

Уменьшением R2 можно снизить вредное влияние на выходное напряжение (4,75 V). Однако такой способ, приведенный на второй части рисунка, сопровождается значительными потерями энергии. Ток будет проходить по участку с меньшим сопротивлением, не выполняя полезные функции. В данном примере необходимо выбрать R1, рассчитанный на мощность не менее 2 Вт, чтобы обеспечить надежную работу устройства.

Резистивный делитель напряжения

Схема простейшего резистивного делителя напряжения

Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора и , подключённых к источнику напряжения U{\displaystyle U}. Поскольку резисторы соединены последовательно, то ток через них будет одинаков в соответствии с первым правилом Кирхгофа. Падение напряжения на каждом резисторе согласно закону Ома будет пропорционально сопротивлению (ток, как было установлено ранее, одинаков):

 U=IR{\displaystyle \ U=IR}.

Для каждого резистора имеем:
{U1=IR1U2=IR2.{\displaystyle \left\{{\begin{array}{l l}U_{1}=IR_{1}\\U_{2}=IR_{2}.\end{array}}\right.}
Сложив выражения, получаем:

U1+U2=I(R1+R2).{\displaystyle U_{1}+U_{2}=I(R_{1}+R_{2}).}

Далее:

I=U1+U2R1+R2=UR1+R2.{\displaystyle I={\frac {U_{1}+U_{2}}{R_{1}+R_{2}}}={\frac {U}{R_{1}+R_{2}}}.}

Из этого следует:

{U1=IR1=UR1R1+R2U2=IR2=UR2R1+R2.{\displaystyle \left\{{\begin{array}{l l}U_{1}=IR_{1}=U{\frac {R_{1}}{R_{1}+R_{2}}}\\U_{2}=IR_{2}=U{\frac {R_{2}}{R_{1}+R_{2}}}.\end{array}}\right.}

Следует обратить внимание, что сопротивление нагрузки делителя напряжения должно быть много больше собственного сопротивления делителя, так, чтобы в расчетах этим сопротивлением, включенным параллельно R2{\displaystyle R_{2}}, можно было бы пренебречь. Для выбора конкретных значений сопротивлений на практике, как правило, достаточно следовать следующему алгоритму:. 1

Определить величину тока делителя, работающего при отключенной нагрузке. Этот ток должен быть значительно больше тока, потребляемого нагрузкой (обычно принимают превышение от 10 раз по величине), но, однако, при этом указанный ток не должен создавать излишнюю нагрузку на источник напряжения U{\displaystyle U}

1. Определить величину тока делителя, работающего при отключенной нагрузке. Этот ток должен быть значительно больше тока, потребляемого нагрузкой (обычно принимают превышение от 10 раз по величине), но, однако, при этом указанный ток не должен создавать излишнюю нагрузку на источник напряжения U{\displaystyle U}.

2. Исходя из величины тока, по закону Ома определяют значение суммарного сопротивления R=R1+R2{\displaystyle R=R_{1}+R_{2}}.

3. Выбрать конкретные значения сопротивлений из стандартного ряда, отношение величин которых близко́ требуемому отношению напряжений, а сумма величин близка расчетному сопротивлению R{\displaystyle R}.

При расчете реального делителя необходимо учитывать температурный коэффициент сопротивления, допуски на номинальные значения сопротивлений, диапазон изменения входного напряжения и возможные изменения свойств нагрузки делителя, а также максимальную рассеиваемую мощность резисторов — она должна превышать выделяемую на них мощность.

Переменный резистор в роли делителя напряжения

Для того, чтобы плавно регулировать выходное напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.

Его обозначение на схеме выглядит вот так:

Принцип работы такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться  в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.

Так как мощность небольшая, всего 1 Вт, то мы не будем нагружать его большим напряжением. Мощность, выделяемая на каком-либо резисторе рассчитывается по формуле P=I2R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого  резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.

Замеряем напряжение между средним и правым контактом и получаем 0,64 Вольта

Суммируем напряжение и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись. Скорее всего на щупах, так как они тоже обладают сопротивлением. Как вы видите, простой переменный резистор мы можем использовать в роли простейшего делителя напряжения.

Что такое делитель тока

Какие ассоциации у вас возникают при словосочетании “делитель тока”? У меня сразу возникает ассоциация с делителем потока. Давайте представим себе реку, у которой очень большой поток.

Это поток воды бежит с очень большой скоростью! Он смывает на своем пути камни, землю, деревья. Представьте, что эта река находится рядом с вашим домом. Через год-два ваш дом смоет под чистую! Чтобы этого не произошло, надо ослабить течение реки, чтобы ее поток был слабый. Например как здесь:

Но как это сделать? А почему бы нам не прорыть большой канал, чтобы бОльшая часть воды текла через него. А это хорошая идея не так ли?

Весь смак заключается в том, что в каждой отдельной речке скорость воды будет меньше. В электротехнике и электронике все тоже самое! Река – это провод, сила потока – это сила тока, ширина реки – сопротивление, напряжение – угол наклона реки. Все элементарно и просто!

Применение делителя напряжения

Расчет падения напряжения в кабеле

Делитель напряжения применяют только там, где нужно уменьшить входной сигнал. Главным образом его использование оправдано в таких электросхемах, где энергоэффективность не требуется учитывать серьезно.

Сферы использования:

  1. В повседневной жизни наиболее часто используется в потенциометрах. Наглядный пример потенциометра – ручка регулирования громкости в музыкальных системах. Базовая конструкция потенциометра включает три вывода;


Потенциометр

  1. Для регулирования уровня сигнала в измерительных схемах (мультиметр и мост Уитстона);
  2. Если вместо сопротивления R2 установить фоторезистор, сопротивление которого зависит от освещенности, то выходное напряжение U2 будет меньшим под световым воздействием и большим в темноте. Другой способ использования – установить термосопротивление вместо R2. U2 – низкое, когда температура повышается, и наоборот. Причем общее напряжение в цепи остается неизменным и равно напряжению аккумулятора;
  3. Емкостные делители можно использовать в передаче мощности для измерения высокого напряжения и для компенсации емкостной нагрузки.

Реальные резисторные элементы всегда имеют приближения – «плюс-минус» от их номинального показателя

Если точность делителя напряжения является важной для конкретной схемы, лучше использовать элементы с жесткими допусками. Также следует проверить их приемлемую производительность в ожидаемых параметрах

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях — Help for engineer

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо, между нулевой и минусом – нижнее плечо.

Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин. Простейший делитель состоит из двух последовательно соединенных резисторов:

На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.

В соответствии с законом Ома (1):

Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):

Тогда напряжение на всем участке цепи (4):

Отсюда определим, чему равно значение тока без включения нагрузки (5):

Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):

Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.

Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.

Онлайн подбор сопротивлений для делителя

Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.

Таким образом, напряжения: U=24 B, U2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R1=1000 Ом, тогда используя формулу (7) получим:

выразим отсюда R2:

Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):

Ток, который протекает через делитель, находится по формуле (5):

Схема делителя напряжения на резисторах рассчитана выше и промоделирована:

Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):

По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:

1. R1=1 кОм, P1=0,324 Вт.
2. R2=333,3 Ом, P2=0,108 Вт.

Полная мощность, которая потеряется:

Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.

Сопротивление конденсатора рассчитывается по формуле (10):

где С – ёмкость конденсатора, Ф;
f – частота сети, Гц.

Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f. Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):

Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):

где L – индуктивность, Гн.

Падение напряжения на индуктивностях (14,15):

Зависимость сопротивления от температуры

Использование резисторов, как термометров, обусловлено почти линейной зависимостью их сопротивления от температуры. Это касается тех резисторов, у которых в качестве резистивного материала используется проволока или металл. Формула зависимости:

R = R0+α(t-t0),

  • α – температурный коэффициент, К-1;
  • R0 – сопротивление проводника при 00К;
  • t0 – температура проводника при 00К.

Речь идёт о значении температуры в Кельвинах. При температурах, приближающихся к нулю по Кельвину (-273°С), у множества металлов при охлаждении R скачком падает до нулевой отметки. В этом случае можно говорить о сверхпроводимости.

Интересно. Металлы, имеющие хорошую проводимость при нормальной температуре, могут не быть сверхпроводниками при критической отметки этой физической величины. Сверхпроводники в нормальном состоянии имеют сопротивление большее, чем традиционные тоководы: медные, серебряные или золотые.

При нагревании проводников изменение сопротивления происходит в основном за счёт изменения его удельного значения и имеет линейную зависимость.

Пример — делитель для осциллографа

Если мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала.

Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал. Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг. Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором.

Емкость шунтирующего конденсатора определяется исходя из того соображения, что отношение модуля сопротивления переменному току шунтирующего конденсатора к модулю сопротивления переменному току входной емкости осциллографа должно быть равно отношению сопротивлений резисторов R1 и R2. А модуль сопротивления переменному току обратно пропорционален емкости конденсатора.

[Емкость шунтирующего конденсатора, пФ] = [Входная емкость осциллографа, пФ] * [Сопротивление резистора R2, Ом] / [Сопротивление резистора R1, Ом]

(читать дальше…) :: (в начало статьи)

 1  2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Еще статьи

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…

Качественный усилитель мощности звуковой, низкой частоты, звука, нч. В…
Качество усилителей звуковой частоты. Обзор, схемы….

Как не спутать плюс и минус? Защита от переполярности. Описание…
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст…

Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис…
Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Соединение светодиодов. Последовательное, параллельное включение оптоэ…
Как правильно включить светодиод, соединять их и входные цепи приборов на их осн…

Параллельное, последовательное соединение резисторов. Расчет сопротивл…
Вычисление сопротивления и мощности при параллельном и последовательном соединен…

Формула для расчета делителя напряжения

Начинающие радиолюбители часто задаются главным вопросом, как правильно рассчитать напряжение после резистора. Для этого необходимо знать, какой ток пойдет по цепи. В простейших схемах постоянного тока его вычисляют по линейному закону Ома. Формула расчета выглядит U=I*R, где:

  • U — напряжение, В;
  • I — ток, А;

В цепях с синусоидальным током, где присутствует реактивное сопротивление катушки или конденсатора, формула выглядит как R=1/(2*pi*f*L) и R=1/(2*pi*f*C) соответственно. В формуле использованы показатели:


График зависимости показателей от сопротивления

  • R — реактивное сопротивление;
  • R — сопротивление, Ом.
  • pi — постоянное число Пи, равное 3,14;
  • f — частота, Гц;
  • L — индуктивность катушки, Генри;
  • C — емкость конденсатора, Фарад.

Получив в расчетах внутреннюю резистивность элементов, далее можно воспользоваться линейной формулой для вычисления выходного значения.

На резисторе

В схеме делителя всегда участвует не меньше двух узлов нагрузки. Их коэффициенты могут быть равны другу, но и отличаться. Поэтому порой возникает необходимость получить номинал выходного вольтажа для каждого из них. Для этого используют всем известную формулу закона Ома: U=I*R.

Вам это будет интересно Все об скважности сигнала

После резистора

Для расчета показателя после резистора необходимо учитывать номиналы обоих элементов, так как они работают совместно друг с другом. Применив закон Ома, получается следующая формула: Uвых=Uпит*R1/(R1+R2), где:

  • Uвых — вольтаж на выходе, В;
  • Uпит — входной вольтаж, В;
  • R1 — первый узел, Ом;
  • R2 — второй узел, Ом.

Падение потенциалов за резистором рассчитывают для каждого узла в отдельности. То есть для второго элемента формула будет выглядеть так: Uвых=Uпит*R2/(R1+R2).

Делитель позволяет разработчикам получить несколько номинальных значений выходного напряжения от одного питающего источника. По этой причине схема получила широкое применение в электронике как в понижающих блоках питания, так и в качестве интегрированного узла электроцепи.

Для чего нужен делитель напряжения

Делитель напряжения для измерения напряжения батареи

Есть несколько разных случаев, когда вам может потребоваться «понизить» напряжение аккумулятора или батареи. В этом случае делитель не заменяет понижающий регулятор. Так, вам может потребоваться понизить напряжение аккумулятора, чтобы измерить его. Предположим, вы используете микропроцессор с 3.3 В (как у Raspberry Pi, например) или микроконтроллер (к примеру, ESP8266). Ваша плата питается от двух последовательно соединенных литий-полимерных аккумуляторов. Вместе эти батареи создают питание 7.4 вольта.

Два резистора сопротивлением 100 кОм уменьшают напряжение с 7.4 до 3.7 вольт. Хотя это уже немного, оно все еще слишком высоко для систем с напряжением 3.3 В. Когда деление напряжения пополам не работает, можно посчитать делитель напряжения с разными сопротивлениями. Взяв R1 равным 100 кОм и R2 равным 68 кОм делитель выдает около 3.0 вольта. Этого достаточно, правда?

Но здесь есть две проблемы. Во-первых, подключение этих двух резисторов последовательно к батарее создаст ток утечки. Независимо от того, что еще происходит в цепи, через делитель будет проходить 44 мкА. Вроде бы мало, но это означает, что мы тратим 325 мкВт энергии впустую. С питанием от USB не стоит беспокоиться о такой большой утечке. Однако при питании от батарей эта утечка означает меньшее время автономной работы. Во-вторых, существует проблема обратного питания, от чего тоже надо избавиться. Для этого желательно реализовать мониторинг напряжения.

Тем не менее, в большинстве приложений не требуется постоянный мониторинг напряжения батареи. Например, вы можете просто включить делитель напряжения, когда вы делаете измерение, как это показано на схеме ниже. Добавьте PNP-транзистор с высокой стороны к простому делителю напряжения. При этом цифровая линия ввода/вывода будет управлять NPN-транзистором, который включает и выключает PNP-транзистор. При такой конфигурации ни один ток не может прокрасться через защитные диоды аналогового вывода. И у вас есть полный контроль над работой делителя.

«Сложный» делитель (подбор сопротивления, расчёт напряжений)


На первый взгляд эта разновидность делителя кажется сложной, а формулы и вовсе отпугивают. Однако подстроечный резистор, включённый по схеме потенциометра, делает схему очень предсказуемой. Сопротивление R2 всегда постоянно, поэтому ток делителя не меняется, и высчитать диапазон регулировки напряжения очень просто.


Калькулятор построен так, что после расчётов можно распечатать его страницу со всеми результатами. Если вдруг понадобится пересчитать делитель — есть формулы на картинке. Справа висит таблица стандартных номиналов радиодеталей — чтобы вы не кошмарили магазины мифическими резисторами на 77 кОм.Инструкция: 1. Задать входное напряжение Uвх. 2. Установить R2max и R2.1 в нули. R2.2 обнулится автоматически. 3. Подобрать такие R1 и R3, чтобы Uвых среднее было близким к нужному. 4. Для точной регулировки укажите максимальное сопротивление подстроечного резистора R2max. 5. Калькулятор выдаст диапазон регулировки (Umin, Umax) и текущее значение Uвых. Последнее можно менять, увеличив сопротивление R2.1. 6. В реальную схему вместо потенциометра можно поставить постоянные R2.1 и R2.2 рассчитанных номиналов.

Ещё калькулятор умеет считать напряжение самого простого двухрезисторного делителя. Для этого надо указать значения R1 и R3 при R2max и R2.1 = 0.

Замечание вообще про любые делители напряжения: Ток делителя Iдел должен быть в 10 и более раз больше, чем ток нагрузки. Иначе её сопротивление войдёт в состав R3, R2.2 и собьёт настройку. Поэтому делители используются там, где токи небольшие — до нескольких десятков миллиампер. Если же вы надумали сделать автомобильную зарядку для телефона через делитель — вы погорячились. И резисторы ваши тоже очень быстро разгорячатся на десяти амперах. Не надо так.

Резистивный делитель

Блок коммутации ( рис. 379) предназначен для оперативного подключения ко входу усилителя внешних источников музыкальных и речевых программ 6 различными уровнями выходного напряжения и сопротивлениями. Согласование входных цепей усилителя с подключаемыми источниками звуковых сигналов осуществляется с помощью резистивных делителей и предварительны усилителей напряжения входного сигнала.

Схема компенсации температуры.| Схема компенсации температуры холодного спая с трехфазной линией соединения.

ИПУС строят на базе операционных усилителей с нелинейной обратной связью. Нелинейную обратную связь чаще всего строят с помощью функциональных преобразователей с использованием резистивных делителей с шунтирующими диодами.

Из формулы ( 2 — 4) видно, что звено менее универсально, чем предыдущее ( Ки 1), и это свойство обусловлено его структурой. Конечно, сделать К 1 при необходимости просто: достаточно ивх подать через резистивный делитель напряжения, но это потребует двух дополнительных резисторов, которые в интегральных схемах занимают значительную площадь и удорожают цепь.

Генератор синусоидальных колебаний со стабилизацией амплитуды выходного напряжения терморезистором.| Генератор со стабилизацией амплитуды синусоидальных колебаний стабилитроном ( а и полевым транзистором ( б.

В схеме на рис. 4.2 а стабилизация амплитуды генерируемых колебаний осуществляется с помощью диодного моста и стабилитрона в цепи отрицательной ОС усилителя. Схема работает от однополярного источника питания, что достигается применением на входах ОУ двух резистивных делителей, задающих смещение по постоянному току.

На самом деле а0у не равно в этом случае нулю, так как исходное выражение (7.16) является приближенным. Однако Ооу может быть существенно меньше a0i и оъг — На рассмотренном эффекте основан принцип самокалибровки высокоточных резистивных делителей напряжения.

Схема компенсационного стабилизатора напряжения на биполярных транзисторах ( а и операционном усилителе ( б.

На рис. 9.21, а изображена схема компенсационного стабилизатора постоянного напряжения на дискретных полупроводниковых приборах. В этом стабилизаторе в блок сравнения Б С входят параметрический стабилизатор, состоящий из стабилитрона Д и резистора Ra, и резистивный делитель RiR Rs — Усилителем постоянного тока является усилитель на маломощном транзисторе Т2 и резисторе RK.

В этом режиме ОУ работает с цепями положительной ОС, и его выходное напряжение может принимать значение только одного из двух пороговых уровней. На выходе двухпозиционно-го компаратора ( рис. 9.15 ж) сигнал будет появляться всякий раз, как только величина входного напряжения выйдет за установленные резистивным делителем R1 — R3 пределы.

Компенсационные стабилизаторы, как отмечалось, подразделяются на стабилизаторы непрерывного действия и импульсные. Любой компенсационный стабилизатор ( рис. 9.20) состоит из блока сравнения БС, в который входят источник опорного напряжения ( параметрический стабилизатор) и резистивный делитель, усилителя постоянного тока У и регулирующего элемента ( транзистора) РЭ.

Схемы входных делителей напряжения. а — резистивного. б — емкостного.

Полное сопротивление делителя RI Кг, определяющее входное сопротивление измерительной схемы, выбирается порядка десятков мегом. Расчет сопротивления R2 производится с учетом шунтирующего действия входного сопротивления вольтметра RB. Недостатком резистивных делителей является зависимость коэффициента деления N от частоты вследствие влияния входной емкости Св вольтметра; поэтому они применяются преимущественно при измерении постоянных напряжений и напряжений низких частот.

Проверив работоспособность двух блоков, можно перейти к следующей фазе настройки — режиму воспроизведения. Один блок переключают на запись, а второй — на воспроизведение. Выход первого блока через резистивный делитель подключают на вход второго блока. При этом делитель настраивают так, чтобы на входах обоих блоков было одинаковое напряжение. После того как получены требуемые параметры, блоки меняют между собой и переключают их род работы. Аналогичным образом настраивают второй блок.

Структурная схема контроллера ККМ.

2.2. Входное сопротивление

Входное сопротивление ЭП определяется как отношение малого приращения входного напряжения к изменению входного тока. Предположим, что в схеме на рис.2.1 в качестве сопротивления нагрузки выступает сопротивление R1. Для рассматриваемой схемы входное напряжение — это напряжение на базе транзистора, а входной ток — ток базы. Входное сопротивление ЭП может быть определено по формуле

rвх = dUвх/dIвх= (dUбэ+dUвых)/dIб=dUбэ/dIб+dUвых/dIб=rбэ+R1dIэ/dIб=rбэ+ (β+1)R1, где- коэффициент усиления транзистора по току.

Итак входное сопротивление эмиттерного повторителя равно

rвх=rбэ+ (β+1)R1.

Пример. Найдем входное сопротивление эмиттерного повторителя при следующих исходных данных: ток коллектораIк= 1 мА,R1= 3 кОм, β = 100.

rвх=rбэ+ (β+1)R1= βuт /Iк+(β+1)R1=

=100 25,5мВ/ 1 мА + 101 3 кОм = 2,55 кОм + 303 кОм = 305,6 кОм.

Из расчета видно, что в общем входном сопротивлении доля первого слагаемого (rбэ) незначительная, поэтому часто использую более приближенную формулу для определения выходного сопротивления эмиттерного повторителя

2.3. Выходное сопротивление

ЭП определяется, как отношение изменения выходного напряжения к изменению выходного тока rвых= -dUвых/dIвыхпри условии, что входное напряжение не изменяется, т.е.Uвх=const, аdUвх= 0.

Для определения выходного сопротивления рассмотрим схему на рис.2.3. здесь Rист– сопротивление источника входного сигнала.

rвых= -dUвых/dIвых= -dUвых/dIэ. (2.3)

dUвх =dURист+dUбэ+dUвых.

Учитывая, что dUвх= 0, и пренебрегаяdUбэполучим

dUвых= -dURист= -dIбRист= -dIэRист /(β+1).

Подставим, найденное значение dUвыхв формулу (2.3) и найдем выходное сопротивление усилителя

rвых= Rист/(1+).

Из формулы видно, что выходное (внутреннее) сопротивление источника входного сигнала уменьшается в (+1) раз при подключении ЭП.

2.4. Смещение в эмиттерном повторителе

Схема на рис.2.1 пропускает на выход сигнал, который больше, чем 0.6В (Uбэоткрытого транзистора). Для того, чтобы схема могла усиливать разнополярные сигналы необходимо создатьсмещение, которое обеспечивает протекание коллекторного тока в течение полного периода сигнала. Смещение обеспечивается путем подачи положительного постоянного напряжения на базу транзистора. Переменный входной сигнал складывается с постоянным напряжением смещения. Величина напряжения смещения должна быть такой величины, чтобы при отрицательной амплитуде входного сигнала напряжение на базе было больше 0,6 В, т.е. транзистор был открыт.

Смещение в усилителе можно задавать с помощью делителя напряжения R1, R2, как показано на рис.2.4. R1и R2выбраны так, чтобы на выходе формировался максимальный симметричный сигнал. Это можно обеспечить, если напряжение на эмиттере транзистора при отсутствии входного сигнала будет равно примерно половине напряжения питания Uп.При подаче на вход переменного напряжения на эмиттере сигнал будет изменяться относительно напряжения Uп / 2. Процесс выбора рабочих напряжений в схеме при отсутствии входного сигнала называетсяустановкой рабочей точки. Сопротивления R1и R2выбираются из условия, что ток протекающий через делитель (ток через сопротивление R2) должен быть намного больше ( по крайней мере в 10 раз) тока базы транзистора, чтобы изменение тока базы при изменении входного сигнала оказывало малое влияние на изменение постоянной составляющей тока делителя.

Разделительная емкость С1не пропускает постоянное напряжение смещения на вход источника сигнала, а емкость С2пропускает в нагрузку только переменный полезный сигнал.

Разделительные емкости С1и С2образуют фильтры верхних частот, нижняя граничная частота которых должна быть выбрана так, чтобы полностью пропускались нижние частоты сигнала. Величины емкости могут быть определены по формуле

С 1/ 2fRэкв, где Rэквдля вычисления С1 равно параллельному соединению сопротивлений R1,R2 и rвх. Для определения С2 предполагаем, что сопротивление нагрузки ЭП будет не меньше R3. Поэтому Rэквв этом случае выбирают равным R3.

Результаты моделирования схемы, показанной на рис.2.4 представлены на рис.2.5.

Из рисунка видно, что выходное напряжение v(5) практически полностью повторяет входное напряжение v(3). Переменное напряжение на базе v(1), по амплитуде равное входному напряжению, изменяется относительно постоянного напряжения смещения, примерно равное 7,5 В. Напряжение на эмиттере v(4) меньше напряжения на базе на Uбэ ≈ 0

studfiles.net

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий