Атомные электростанции

Что такое ПАТЭС

Если не усложнять, то плавучая атомная электростанция мало, чем отличается от той, что расположена на суше за исключением опоры, на которой она построена.

ПАТЭС состоит из плавучего энергоблока, береговой инфраструктуры для выдачи электрической и тепловой энергии потребителям, а так же гидротехнических сооружений, которые отвечают за безопасную стоянку в акватории.

Сам энергоблок имеет не меньше, а даже больше степеней защиты, так как потенциально на него может быть больше воздействий и инженеры постарались все предусмотреть. В первую очередь, это касается очень мощной плавучей основы. Все ее части двуслойные, то есть даже столкновение с чем-либо не должно сильно навредить ПАТЭС.

На Академике Ломонсове установлено два атомных реактора типа КЛТ-40С. Электрическая мощность каждого составляет 35 МВт. В сумме получается максимальная электрическая мощность всей станции на уровне 70 МВт. Этого достаточно для перекрытия потребностей в энергии населенного пункта, в котором проживает до 100 000 человек.

Кроме выработки электроэнергии, станция может вырабатывать и тепло. Максимальная тепловая мощность составляет 50 Гкал/ч. Но и этим не ограничивается применение ПАТЭС Академик Ломоносов.

Чтобы станция была еще больше похожа на швейцарский нож, ее оснастили системой опреснения воды, которая должна опреснять до 240 тысяч кубометров морской воды в сутки.

Академика Ломоносова начали строить еще в 2007 году и только сейчас он был введен в промышленную эксплуатацию. Хотя, первую энергию в сеть он начал передавать еще в декабре 2019 года.

Так объект выглядел на этапе строительства

Преимущества и недостатки атомных электростанций

Спрос на электроэнергию, постоянно растет во всем мире. Особенно это касается развитых стран, где потребление значительно опережает выработку электричества. Принимаются меры по использованию альтернативных источников, но заметных практических результатов они пока не дали. Решить эту проблему возможно разными способами, в том числе путем дальнейшего развития и совершенствования атомной энергетики. При этом, нужно обязательно учитывать все плюсы и минусы атомных электростанций.

Строительство новых АЭС имеет несомненные достоинства, среди которых можно отметить следующие:

  • Используемые топливные ресурсы обладают высокой энергоемкостью. Полноценное использование одного килограмма урана дает такое же количество энергии, которое получается при сжигании 50 т нефти или 100 т каменного угля. Отсюда и высокий КПД атомной электростанции.
  • Возможность переработки ресурсов и их вторичное применение. В отличие от традиционных видов топлива, уран после расщепления вполне может быть использован вновь. В перспективе возможен полный переход к замкнутому циклу, при котором не будут образовываться вредные и опасные отходы.
  • Когда эксплуатируется электростанция (АЭС), у нее отсутствует парниковый эффект. Эти установки ежедневно предотвращают выбросы в атмосферу миллионов тонн углекислого газа.
  • Независимость реакторов от мест, где располагается топливо. Из-за высокого энергетического эквивалента ядерных ресурсов, процесс их транспортировки не требует существенных затрат.
  • Стоимость эксплуатации сравнительно невысокая и не превышает расходы на содержание других типов электростанций.

Однако, учитывая специфику атомных установок, следует отметить и недостатки, связанные с их использованием:

  • В первую очередь, это тяжелые последствия, возникающие даже при незначительной аварии. В связи с этим, любая АЭС опасна и требует достаточно сложных систем безопасности с широкими возможностями резервирования. Это позволяет обезопасить основной механизм даже при значительных авариях.
  • Необходимость уничтожать отработанное топливо. Его утилизация требует серьезных затрат, достигающих 20% от общих эксплуатационных расходов.
  • Для атомных электростанций по техническим причинам нежелательна работа в маневренном режиме.

Тем не менее, несмотря на недостатки, данное направление считается перспективным, поэтому ведутся постоянные исследования по дальнейшему совершенствованию и развитию атомной энергетики.

Все атомные электростанции России

Плавучая атомная электростанция

Аварии на атомных электростанциях

Газотурбинная электростанция (ГТЭС)

Тепловые электростанции (ТЭС)

Волновая электростанция (ВЭС)

Управление реактором

Вернемся снова к ядерному реактору. Как же он управляется? Помимо твэлов с топливом и замедлителя в нем находятся еще управляющие стержни. Они предназначены для пуска и остановки реактора, поддержания его критического состояния в любой момент его работы и для перехода с одного уровня мощности на другой. Стержни изготовлены из материала, хорошо поглощающего нейтроны.

Для того чтобы реактор работал на постоянном уровне мощности, необходимо создать и поддерживать в его активной зоне такие условия, чтобы плотность нейтронов была неизменной во времени. Это состояние реактора и принято называть «критическим состоянием», или просто «критичностью».

Когда активная зона сильно разогревается, в нее опускаются управляющие стержни, которые встают между твэлами и вбирают в себя избыточные нейтроны. Если нужно добавить мощности, управляющие стержни снова поднимают. Если же их опустить на всю длину твэлов, то цепная реакция прекратится, реактор будет заглушен.

Кроме того, на случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с избыточным энерговыделением в активной зоне реактора, в каждом реакторе предусмотрена возможность экстренного прекращения цепной реакции. В этом случае в центральную часть активной зоны под действием силы тяжести сбрасываются стержни аварийной защиты.

История и особенности ядерной энергетики

«Энергия — всему голова» — именно так можно перефразировать известную пословицу, учитывая объективные реалии XXI века. С каждым новым витком технического прогресса человечеству необходимо всё большее ее количество. Сегодня энергия «мирного атома» активно используется в экономике и производстве, и не только в энергетике.

Электроэнергия, производимая на так называемых АЭС (принцип работы которых весьма прост по своей сути), широко используется в промышленности, освоении космоса, медицине и сельском хозяйстве.

Ядерной энергетикой называется отрасль тяжелой промышленности, извлекающая тепловую и электроэнергию из кинетической энергии атома.

Когда же появились первые АЭС? Принцип работы подобных электростанций советские ученые изучали еще в 40-х годах. Кстати, параллельно они же изобретали и первую атомную бомбу. Таким образом, атом был одновременно и «мирным», и смертельным.

В 1948 году И. В. Курчатов предложил советскому правительству начать проводить непосредственные работы по извлечению атомной энергии. Двумя годами позже в Советском Союзе (в городе Обнинске Калужской области) начинается строительство самой первой на планете АЭС.

Принцип работы всех атомных электростанций схож, а разобраться в нем совсем не трудно. Об этом пойдет речь далее.

Атомная электростанция и ее устройство:

Атомная электростанция (АЭС) – это ядерная установка, назначением которой является выработка электрической энергии.

Атомная электростанция (АЭС) – это ядерная установка для производства электрической энергии в заданных режимах и условиях применения, располагающаяся в пределах определенной проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом).

Отличие АЭС от иных видов электростанций заключается в том, что ее конструкция включает в себя ядерный реактор, являющийся ее основным компонентом. В качестве топлива в ней применяется уран-235.

АЭС располагается на территории нескольких зданий, в которых размещается комплекс сооружений, систем и оборудования, требуемых для обеспечения ее работы.

В главном корпусе АЭС находится реакторный зал, в котором располагаются:

– реактор,

– специальный бассейн, служащий для выдержки ядерного топлива,

– машина для выполнения перегрузок топлива (перегрузочная машина).

Работа этого оборудования контролируется персоналом – операторами, использующими в этих целях блочный щит управления.

Ключевой элемент реактора – зона, располагающаяся в бетонной шахте. В нем также предусмотрена система, обеспечивающая управление и защитные функции; с ее помощью можно выбирать режим, в котором должна проходить управляемая цепная реакция деления. Система обеспечивает и аварийную защиту, что позволяет оперативно прекратить реакцию в случае возникновения внештатной ситуации.

Во втором здании АЭС находится турбинный зал, в котором располагаются турбина и парогенераторы. Кроме того, имеется корпус, в котором перегружается ядерное топливо и хранится отработанное ядерное топливо в специально предусмотренных бассейнах.

На территории атомной станции располагаются конденсаторы, а также градирни, охладительный пруд и брызгальный бассейн, представляющие собой компоненты оборотной системы охлаждения. Градирнями называются башни, выполненные из бетона и по форме напоминающие усеченный конус; в качестве пруда может служить естественный или искусственный водоем. АЭС оборудована высоковольтными линиями электропередач, простирающимися за границы ее территории.

Строительство первой в мире атомной электростанции было начато в 1950 году в России и завершено четыре года спустя. Для осуществления проекта была выбрана территория неподалеку от пос. Обнинского (Калужская область).

Однако впервые вырабатывать электроэнергию начали в Соединенных Штатах Америки в 1951 году; первый успешный случай ее получения был зафиксирован в штате Айдахо.

В сфере производства электроэнергии лидируют США, где ежегодно вырабатывается более 788 млрд кВт/ч. В список лидеров по объемам выработки также входят Франция, Япония, Германия и Россия.

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Как вырабатывается электроэнергия на АЭС

В ходе протекания цепной реакции выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель первого контура — воду. Вода подается снизу в активную зону реактора с помощью главных циркуляционных насосов (ГЦН). Нагреваясь до температуры 322 °С вода поступает в парогенератор (теплообменник), где, пройдя по тысячам теплообменных трубок и отдав часть тепла воде второго контура, вновь поступает в активную зону.

Так как давление второго контура ниже, вода в парогенераторе вскипает, образуя пар с температурой 274°С, который поступает на турбину. Поступая в цилиндр высокого давления, а затем в три цилиндра низкого давления, пар раскручивает турбину, которая, в свою очередь, вращает генератор, вырабатывая электричество. Отработанный пар поступает в конденсатор, в котором он конденсируется с помощью холодной воды из пруда-охладителя или градирни и вновь возвращается в парогенератор с помощью питательных насосов.

Турбинное отделение АЭС и сама турбина

Такая сложная двухконтурная система создана для того, чтобы оградить оборудование АЭС (турбина, конденсатор), а также окружающую среду от попадания радиоактивных частиц из первого контура, появление которых возможно из-за коррозии оборудования, наведенной радиоактивности, а также разгерметизации оболочек ТВЭЛов.

Падение корпуса первого реактора

Белорусско-российское межправительственное соглашение о строительстве атомной электростанции в Островце в Гродненской области было подписано 25 ноября 2011 года. Застройщиком выступила российская госкорпорация «Росатом». На эти цели Россия открыла Беларуси кредитную линию размером до 10 млрд долларов. Активная фаза строительства началась в 2013 году.

10 июля 2016 года во время перемещения корпус реактора для первого блока БелАЭС проскользнул по стропам и соприкоснулся с землей. Как оказалось, строители нарушили инструкцию по строповке грузов. По данным «Росатома», нештатная ситуация не повредила корпус.

Через месяц власти Беларуси все-таки приняли решение заменить корпус реактора. Это произошло после того, как специалисты проанализировали комплект документов и пришли к выводу, что подтвердить безопасность корпуса невозможно. В «Росатоме» с позицией Минска согласились, дав понять, что считают причиной замены не соображения безопасности, а «комфорт общественного мнения».

26 декабря 2016 года случилась неприятность при транспортировке корпуса, который прислали на замену. При перевозке в Беларусь он задел опору электропередачи. Специалисты заявили, что отметина на защитном патрубке малозначительная. Поэтому корпус доставили в Островец.

Данные инциденты стали одним из факторов, которые привели к превышению сроков строительства станции.

Парогенератор

Вернемся к процессу преобразования ядерной энергии в электричество. Для производства водяного пара на АЭС применяются парогенераторы. Тепло они получают от реактора, оно приходит с теплоносителем первого контура, а пар нужен для того, чтобы крутить паровые турбины.

Применяются парогенераторы на двух- и трехконтурных АЭС. На одноконтурных их роль играет сам ядерный реактор. Это так называемые кипящие реакторы, в них пар генерируется непосредственно в активной зоне, после чего направляется в турбину. В схеме таких АЭС нет парогенератора. Пример электростанции с такими реакторами – японская АЭС «Фукусима-1».

Вода первого контура, циркулирующая через активную зону реактора, омывает тепловыделяющие элементы, нагреваясь при этом до температуры 320–330° С. Но поскольку вода в обычном состоянии при давлении в 1 атмосферу закипает уже при температуре 100°С, то для того чтобы повысить температуру кипения, повышают и давление в первом контуре теплоносителя. В современных реакторах типа ВВЭР (водо-водяной энергетический реактор – они являются основой мировой атомной энергетики) давление в первом контуре достигает 160 атмосфер.

Дальше эта очень горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура. Это контур так называемого рабочего тела, т. е. среды, совершающей работу, преобразуя тепловую энергию в механическую. Эта вода, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому она закипает. Образовавшийся водяной пар под высоким давлением поступает на лопатки турбины.

Споры с Госатомнадзором

Стоит сказать, что буквально летом Госатомнадзор и БелАЭС выясняли отношения в суде из-за завоза на станцию 5 мая свежего ядерного топлива (СЯТ) из России.

Согласно протоколу от 27 мая, госпредприятие «Белорусская АЭС» совершило правонарушение, выразившееся в фактическом проведении работ с СЯТ при наличии неустраненных нарушений и недостатков, отраженных в Плане мероприятий по устранению и (или) компенсации отступлений, влияющих на безопасность, при осуществлении деятельности в области использования атомной энергии, который был утвержден гендиректором компании 7 апреля 2020 года. То есть не исполнен пункт 12 особых лицензионных требований, говорилось в материалах суда.

БелАЭС будет состоять из двух энергоблоков общей мощностью 2,4 тыс. МВт, она сможет производить 18,5 млрд кВт·ч электроэнергии в год. Фото: Ольга Шукайло, TUT.BY

В БелАЭС отмечали, что неоднократно направляли в адрес Госатомнадзора документы, содержащие информацию об устранении нарушений и недостатков по пунктам Плана мероприятий. Госатомнадзор считал направленные данные недостаточными, а нарушения и недостатки неустраненными, о чем были направлены официальные письма.

В итоге суд наказал БелАЭС штрафом в размере 50 базовых величин (1350 рублей).

Впрочем, за этим процессом могло скрываться противостояние «Росатома» и Госатомнадзора. В начале 2020 года литовские спецслужбы опубликовали доклад, согласно которому российская госкорпорация считает некомпетентным белорусское надзорное учреждение, которое препятствует «гладкому» строительству АЭС. Даже когда белорусские эксперты заняли более жесткую позицию, «Росатом» неохотно следовал их рекомендациям. Литовские силовики полагают, что «Росатом» предпочитает скрывать информацию о дефектах в проекте АЭС, так как россияне опасаются за свою репутацию надежного партнера. По мнению литовцев, на строительстве нарушались правила составления документации и лицензирования, не обеспечивалась поставка адекватного оборудования.

Как создавалась первая в мире АЭС?

Для атомного проекта СССР в 1945 — 1946 годах были созданы 4 лаборатории ядерной энергетики. Первая и четвертая в Сухуми, вторая – в Снежинске и третья вблизи станции Обнинская в Калужской области, называлась она лаборатория В. Сегодня это физико-энергетический институт им. Лейпуцкого.

Она создавалась с участием немецких физиков, которых после окончания войны добровольно — принудительно выписывали из Германии для работы в атомных лабораториях Союза, точно так же с немецкими учеными поступали и в США. Одним из прибывших был физик-ядерщик Хайнс Позе, который какое-то время возглавлял Обнинскую лабораторию В. Так что своим открытием первая атомная станция обязана не только советским, но и немецким ученым.

Разрабатывалась первая в мире АЭС в Курчатовской лаборатории №2 и в «НИИхиммаше» под руководством Николая Доллежаля. Доллежаль был назначен главным конструктором ядерного реактора будущей АЭС. Создавали первую АЭС мира в Обнинской лаборатории В, все работы курировал сам Игорь Васильевич Курчатов, которого считали «отцом атомной бомбы», а теперь хотели сделать и отцом ядерной энергетики.

В начале 1951 года проект АЭС находился только на стадии разработки, но здание под атомную станцию уже начали строить. Тяжелые конструкции из железа и бетона, которые невозможно переделать или расширить, уже существовали, а ядерный реактор все еще не был до конца спроектирован. Позже у строителей появится еще одна головная боль – вставить ядерную установку в уже готовое здание.

Интересно то, что первая АЭС в мире проектировалась так, что в ТВЭЛы – тонкие трубки, которые помещаются в ядерную установку, помещались не урановые таблетки, как сегодня, а урановый порошок, из сплавов урана и молибдена. Первые 512 ТВЭЛов для запуска АЭС были сделаны на заводе в городе Электросталь, каждый из них проходил проверку на прочность, делали это вручную. В ТВЭЛ заливалась горячая вода нужной температуры, по покраснению трубки, ученые определяли, выдерживает ли металл высокую температуру. В первых партиях ТВЭЛов было очень много бракованных изделий.

Крупнейшие АЭС мира

Атомная электростанция мощностью 1000Вт когда-то казалась недосягаемой вершиной ядерной науки. Сегодня карта АЭС мира включает в себя огромных гигантов атомной энергетики мощностями под 6, 7, 8 тысяч мегаватт. Какие они, самые крупные атомные электростанции в мире?

К самым большим и мощным АЭС в мире сегодня относят:

  1. АЭС Палюэль во Франции. Эта атомная станция работает на 4х энергоблоках, общая мощность которых составляет 5 528МВт.
  2. Французская АЭС Гравлин. Эта АЭС на севере Франции считается самой большой и мощной в своей стране. На этой АЭС работают 6 реакторов общей мощностью в 5 460МВт.
  3. АЭС Ханбит (другое название Йонгван) находится на юго-западе Южной Кореи на побережье Желтого моря. 6 ее ядерных реакторов дают мощность в 5 875 МВт. Интересно, что переименовали АЭС Йонгван в Ханбит по просьбе рыбаков местечка Йонгван, где находится станция. Продавцы рыбы не хотели, чтобы их продукция ассоциировалась во всем мире с атомной энергетикой и радиацией. Это снижало им прибыль. 4. АЭС Ханул (ранее – АЭС Хульчин) тоже южнокорейская атомная электростанция. Примечательно, что АЭС Ханбит, она превосходит всего в 6МВт. Таким образом, мощность станции Ханул составляет 5 881 МВт. 5. Запорожская АЭС — самая мощная АЭС в Европе, Украине и на всем постсоветском пространстве. Находится эта станция в городе Энергодар. 6 ядерных реакторов дают мощность в 6000 МВт. Строить Запорожскую АЭС начали еще в 1981 году, в 1984 году ее ввели в эксплуатацию. Сегодня эта станция генерирует пятую часть всей электроэнергии Украины и половину всей атомной энергии страны.

На чем работает атомная станция

Основным элементом, на котором работают атомные станции, является уран-235, который загружается в реактор в специальных картриджах, которые называются тепловыделяющими элементами (ТВЭЛ). В одном реакторе их может быть несколько десятков и даже сотен.

ТВЭЛ доставляют к реактору на специальных платформах, а загружают их в него краном. Этот же кран участвовал в строительстве станции и погружал в специальную капсулу сам реактор.

В год средний реактор использует около десяти килограмм топлива. Именно такой небольшой объем выделяет то количество энергии, которое и производит станция. Если говорить о производительности ядерного топлива, можно сказать, что один грамм урана-235 позволяет получить столько же энергии, сколько от сжигания топлива произведенного из двух тонн нефти. В итоге, всего десять килограмм топлива являются эквивалентом примерно семисот цистерн нефти.

Это только 15 цистерн, а аналогом 10 кг ядерного топлива является почти 700 цистерн.

Когда появилась первая атомная станция

Первым серьезным шагом в сторону использования свойств деления атома, в том числе, атомного оружия и мирного атома, стало испытание первой атомной бомбы в 1945 году. Произошло это 16 июля на полигоне в штате Нью-Мексико. Во время тех испытаний многие поняли, что ужасы Второй мировой войны немного померкли на фоне того, чтобы могло произойти, появись такое оружие чуть раньше.

В СССР первые ядерные испытания на полигоне произошли только спустя 4 года — 29 августа 1949 года. С тех пор у двух крупнейших держав были технологии, которые позволили не только запугивать друг друга своей силой, но и работать на благо мирного атома и применения этой разрушительной силы для того, чтобы нести свет и тепло в каждый дом.

Первая атомная электростанция была запущена в 1954 году в районе города Обнинск Московской области. Идейным вдохновителем и руководителем проекта был знаменитый советский физик, академик АН СССР и по совместительству “отец” советской атомной бомбы Игорь Курчатов.

Игорь Курчатов за работой.

Преимущества АЭС перед ТЭС

Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

ТЭС, то есть теплоэлектростанции бывают двух видов:

  1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция». 2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

  1. Диоксид серы или сернистый ангидрид – опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека. 2. Оксиды азота – опасны для дыхательной системы человека и животных, раздражают дыхательные пути. 3. Бенапирен – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

Вышеперечисленные выбросы для АЭС также не характерны. Преимущество АЭС — выбросы вредных веществ в атмосферу на атомных станциях ничтожно малы и по сравнению с выбросами ТЭС, безвредны.

Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

А соседям наша электроэнергия нужна?

Невостребованную на внутреннем рынке электроэнергию правительство планировало продавать в соседние страны. По данным Министерства энергетики, экспорт электроэнергии в 2019 году составил 2,4 млрд киловатт-часов, что в 2 раза больше, чем годом ранее. Покупали белорусское электричество страны Балтии через литовскую площадку энергобиржи NordPool и Украина. В страны Балтии было продано 1,5 млрд киловатт-часов, в Украину — 852,8 млн киловатт-часов.

Однако буквально в последние годы потенциал экспорта электроэнергии усложнился. Украина сейчас озабочена поддержкой внутренних производителей электроэнергии, что может повлиять на объемы ее импорта. В частности, Киев рассматривает возможность временного ограничения импорта электроэнергии для стран, не являющихся членами Энергетического сообщества по договорам, и если договоры не предусматривают обеспечение паритета, то есть когда Украина импортирует электроэнергию, она должна иметь возможность экспортировать ее на равных условиях. Если Рада примет соответствующий документ, то до конца 2021 года экспорт энергии в Украину будет закрыт.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий