Что такое адресная светодиодная лента и как она работает

Немного теории

Я думаю все знают, что свет – это поток фотонов, но в то же время он является электромагнитной волной, излучением. Человеческий глаз воспринимает очень узкий диапазон этого излучения: приблизительно от 390 до 790 ТГц (террагерц), так называемое видимое излучение или видимый свет. “Ориентироваться” в этом диапазоне электромагнитного излучения принято в обратной величине – длине волны, измеряемой в данном случае в нанометрах (нм): человеческий глаз видит излучение в диапазоне от ~400 нм (фиолетовый) до ~800 нм (красный). Между синим и красным есть ещё один важный цвет – зелёный:

Красный (Red, R), зелёный (Green, G) и синий (Blue, B) являются основными цветами: смешивая эти три цвета в разных пропорциях можно получить плюс-минус все остальные цвета.

Этот наглядный “двухмерный” случай с кругами вы тоже скорее всего видели. Если раскручивать тему дальше, то можно задаться интенсивностью каждого цвета и получить итоговый цвет как функцию от трёх переменных, или же трёхмерное цветовое пространство RGB. Если интенсивности всех трёх цветов равны нулю – получится чёрный цвет, если все три максимальны – белый, а всё что между – оттенки:

На картинке выше интенсивность каждого цвета представлена диапазоном 0-255. Знакомое число, не правда ли? Всё верно, в большинстве применений диапазон каждого цвета кодируется одним байтом, потому что это удобно с точки зрения программирования и достаточно с точки зрения глаза: три цвета – три байта – 256*256*256 == 16.8 миллионов оттенков. Да, именно эта цифра часто фигурирует в рекламах смартфонов и телевизоров, и именно столько оттенков мы можем абсолютно не напрягаясь получить при использовании Arduino и RGB светодиодов, о чём и поговорим в этом уроке.

Правильная покупка светодиодной ленты на AliExpress.

Что еще можно сказать по сечению проводов? Например,
лента 2812 на один диод потребляет порядка 60мА. При длине подсветки в 5 метров
ток составит 18 Ампер!

По всем расчетным таблицам для такого тока требуются
провода сечением 2,0-2,5мм2. Даже на самой ленте медные дорожки такого сечения
не обеспечивают.

Поэтому, если хотите нормального свечения и яркости, даже
на стандартные отрезки по 5 метров всегда подключайте питание с обоих концов.

Помимо сечения проводов важное значение играет и качество
самих дорожек. Конечно, китайцы вам будут говорить, что у них самая лучшая
продукция и никто не жаловался

Но как это проверить, не покупая изделие? Элементарно –
запросите информацию по весу ленты. После этого сравните одинаковые модели от
разных производителей.

Так например, у ленты длиной 5м (60 светодиодов на метр)
при весе менее 100гр просадки напряжения начинаются уже через 1,5 метра!

Объясняется это очень тонкими медными дорожками или
некачественной медью в них.

Что нужно для подключения

Нам понадобятся:

  • Лента со светодиодами.
  • Блок питания.
  • RGB-контроллер в комплекте с пультом управления (необязательно).
  • RGB-усилитель (в некоторых случаях).

В первую очередь выбираем блок питания. Включение линии светодиодов напрямую в сеть 220в недопустимо, она сразу перегорит. Они рассчитаны на напряжение 12 и 24 вольта и постоянный ток. БП преобразует ток в сети (он, как правило, переменный) в постоянный и понижает напряжение. Характеристики ленты написаны на этикетке.

БП рекомендуем выбирать с запасом хотя бы 30%. Если характеристики с лентой будут совпадать, то блок станет работать на износ, и срок его службы сократится.

RGB-контроллер подключается в цепи между БП и светодиодами. Он регулирует яркость и цвет светодиодов.

Если контроллер не нужен, то можно подключить к питанию напрямую. Тогда нужно к «+» контакту блока (некоторые виды БП называют драйверами) присоединить «+» проводок ленты. А к «-» драйвера сразу три цветовых провода.

В некоторых случаях для того, чтобы правильно подключить rgb ленту, необходимо добавить в цепь усилитель. Об этом ниже.

Сфера применения

Сейчас стоимость этих лент уменьшается, а популярность растет. С востребованностью расширяется и сфера применения. Их используют для создания различных цветовых эффектов типа волна, бегущий огонь, различных подсветок для телевизора, для компьютера, для подсветки материнской платы, оформления рюкзака и т.п.

Возможность написания программ самостоятельно позволяет получить дополнительные возможности перелива цвета, его мерцание или моргания. Можно использовать для оформления на окна или для подсветки лестницы. Для большей зрелищности совмещают режимы подсветки с цветомузыкой.

Или создать неповторимый вид своего дома, закрепив ее по периметру фасада. Промышленность выпускает ленты не только для использования в помещениях, но и для улицы. Для этого подойдут изделия со степенью защиты IP65-IP68. Часто светодиодные ленты применяют для создания цветовой подсветки и в автомобиле.

ОСОБЕННОСТИ

Данная библиотека нужна для проектов с лентой, в которых критичен объём занимаемой оперативной памяти: его можно уменьшить в 1.5 и 3 раза по сравнению с обычными библиотеками, а также вообще отказаться от динамического буфера и управлять лентой любой длины даже с ATtiny!! Библиотека написана очень просто, используемые в ней алгоритмы и решения очень прозрачны и могут кому-нибудь пригодиться. Единственный минус: инструменты для генерации и изменения цвета работают медленнее, чем в FastLED, поэтому для быстрых красивых эффектов на большой ленте/матрице придётся подключать фастлед для быстрой математики.

Как подключить RGB ленту от 5 до 10 метров

Теперь рассмотрим более интересный вариант, который встречается не менее часто, особенно, если мы делаем подсветку потолка в квартире или нам необходимо осветить большой периметр какого-нибудь ареала.

Есть два варианта подключения. один более дешевый и второй более дорогой, но «продуктивнее».

Сначала посмотрим на более дешевую схему подключения светодиодной RGB ленты от 5 до 10 метров.

Для этого нам понадобится всего лишь один блок питания и один RGB контролер. Смотрим ниже на схему как подключить RGB ленту метражом от 5 до 10.

В данном случае мы запитываем светодиодную RGB ленту от одного блока питания, не используя усилитель. Для этого нужно применить 4-х жильный провод сечением не более 1.5 мм и длиной не более 5 метров. Такая схема подходит для удлинения маломощных RGB лент. К таким можно отнести LED ленту с 30 светодиодами на метр. По факту такая схема очень неудобная и трудоемкая.

Конечно, никто не запрещает использовать такой способ подключения и на более мощных лентах, но тогда стоит позаботиться о более мощном контролере и блоке питания.

Предупрежу сразу вопрос. почему эта схема не очень хороша. Приведу пример: возьмем две ленты RGB с общей мощностью потребления 144 Вт (72*2). Блок питания для такой мощности будет достаточно громоздкий. Куда его спрятать? Тут может возникнуть проблема.

По поводу контролера тоже все неоднозначно. Контролеры стоит брать с запасом мощности. Если рассматриваем первый пример на 144 Вт 5-10 метров RGB лент, то контролер берите с запасом. Тем более, мы понимаем, что большинство светодиодной продукции завозится из Китая, а там заявленная мощность не всегда соответствует истине. Для первой схемы нужен контролер 144*2=288 Вт. Это естественно в разы увеличивает стоимость конечной продукции, а где Вы сможете найти такой контролер — это уже одному Богу вестимо. Большая редкость!!!

Теперь рассмотрим более продуктивную схему. Когда используя дополнительные усилители и блоки питания мы можем подключать ленты RGB не только от 5 до 10 метров, но до 20 и более метров. Рассмотрим как это соединение работает.

Для такого подключения необходим один блок питания и несколько усилителей между лентами. Необходимо правильно подключать усилители, т.к. у них есть «вход» и «выход». Конец первой ленты необходимо подключить ко «входу» усилителя, а начало второй к «выходу». «Вход»-Input, «Выход» — Output.

Важно правильно подключать усилители. У них есть «Вход» и «Выход»

Поэтому, конец первой ленты подключается ко «входу» усилителя с надписью «Input», а начало второй, подключается к выходу, с надписью «Output».

Подсоединяем провода очень аккуратно, т.к. перепутав соединения мы получим эффект, когда ленты RGB будут не правильно светиться (каждый отрезок по своему). Также от блока питания необходимо проложить дополнительные проводники для подвода питания к усилителям.

Плюсы такого подключения RGB лент

  • Компактнее т.е. габариты блоков в питания меньше.
  • Для такой схемы проще найти контроллер
  • Можно подключать сколько угодно лент
  • Такая схема надежнее

С помощью микроконтроллеров

С помощью него можно получить множество различных оттенков света. Управление RGB-светодиодом осуществляется с помощью микроконтроллера (MK), например, Arduino.

Конечно, можно обойтись простым блоком питания на 5 вольт, резисторами в 100-200 Ом для ограничения тока и тремя переключателями, но тогда управлять свечением и цветом придется вручную. В таком случае добиться желаемого оттенка света не получится.

Скетч Arduino для управления трехцветным светодиодом написать несложно, можно найти множество примеров в интернете с полным описанием подключения. Мы уже делали такую программу для Wemos — посмотрите здесь, и для Arduino — здесь.

Проблема появляется тогда, когда нужно подсоединить к микроконтроллеру сотню цветных светодиодов. Количество выводов у контроллера ограничено, а каждому светодиоду нужно питание по четырем выводам, три из которых отвечают за цветность, а четвертый контакт является общим: в зависимости от типа светодиода он может быть анодом или катодом.

Особенности ленты и ее главного компонента – светодиода

Светодиод

Светодиодная лента сегодня представляет собой один из самых выгодных источников света. В ее основе лежит светодиод, который напоминает маленькую лампочку. Хотя на самом деле это не так.Устройство светодиода позволяет ему пропускать электричество только в одном направлении, излучая при этом свет. Светодиод способен работать только от источника питания, имеющего постоянный ток.

Светодиод представляет собой полупроводник с электронно-дырочным р-п переходом, а также контактом металл-полупроводник, способным генерировать оптическое излучение. Самым важным элементом такого диода является р-п-переход. Этот переход имеет вид двух частей полупроводника, характеризующихся различными видами проводимости. На конце «n-типа» находится избыток электронов, а на конце «р-типа» — избыток дырок. В ситуации, когда приложить к р-n переходу «прямое смещение» (подсоединить источник питания), то через него начнет течь ток.
В основе любой светодиодной ленты находится диод. Светодиодные ленты представляют собой источник света, в котором светодиоды расположены последовательно и на гибкой основе.

Участок ленты

Кроме светодиодов, нанесенных на специальную основу и соединенных между собой, в состав светодиодной ленты также входит еще и резистор.
Для любой светодиодной продукции характерно низкое напряжение. Поэтому светодиоды в ленте размещают по три в одной группе. Они соединены последовательно и заканчиваются ограничивающим резистором. Этим обусловлен тот факт, что такая продукция может резаться на куски нужного размера только в определенных местах, которые на ленте обозначены символом ножниц. Такие участки имеются на каждых 5 см основы.
Любую светодиодную ленту следует подключать к блоку питания.

Знание строения ленты и светодиода необходимо в ситуации, когда их нужно будет проверить на работоспособность. Без знания строения сложно понять, как и чем можно проверить работу конкретного светодиодного изделия в домашних условиях.

Ардуино и адресная светодиодная лента

Этот проект – простой способ начать работу, но идеи, которые он охватывает, могут быть расширены для действительно эффектного освещения. С помощью всего лишь нескольких компонентов вы можете создать свой собственный восход солнца. Если у вас есть стартовый комплект с Arduino, вы можете использовать любую кнопку или датчик для запуска светодиодов при входе в комнату, например:

Теперь, когда мы рассмотрели схему с обычной светодиодной лентой, перейдем к адресным светодиодным лентам  SPI RGB лента.

Светодиодная лента Ардуино – Яркие идеи.

Эти ленты требуют меньшего количества компонентов для запуска, и есть некоторая свобода в отношении именно того, какие значения компонентов вы можете использовать. Конденсатор в этой цепи гарантирует, что светодиоды 5v получают постоянный источник питания. Резистор становится гарантом того, что сигнал данных, полученный от Arduino, не загружен всяческими помехами.

Вам понадобится:

● Светодиодная лента 5v WS2811/12/12B; Все три модели имеют встроенные микросхемы и работают одинаково.

● 1 x Arduino Uno или аналогичная совместимая плата;

● 1 x резистор 220-440 Ом;

● 1 x конденсатор microFarad 100-1000 (все, что между этими двумя значениями, отлично подойдет);

● Макет и монтажные провода;

● Блок питания 5 В.

Настройте схему, как показано на рисунке:

Обратите внимание, что конденсатор должен быть правильной ориентации. Вы можете понять, какая сторона прикрепляется к рейке земля, ища знак минуса (-) на корпусе конденсатора

На этот раз мы задействуем Arduino, используя источник питания 5 В. Это позволит устройству работать автономно

Вы можете понять, какая сторона прикрепляется к рейке земля, ища знак минуса (-) на корпусе конденсатора. На этот раз мы задействуем Arduino, используя источник питания 5 В. Это позволит устройству работать автономно.

Во-первых, убедитесь, что ваша плата может работать с 5 В, прежде чем присоединить ее к источнику питания. Почти все платы работают на 5V через USB-порт, но штыри питания на некоторых могут иногда пропускать регуляторы напряжения и превращать их в поджаренные тосты.

Кроме того, рекомендуется убедиться, что несколько отдельных источников питания не подключены к Arduino – отсоединяйте USB-кабель всякий раз, когда используете внешний источник питания.

Светодиодная лента Ардуино – Бегущий огонь или световая волна

Чтобы безопасно запрограммировать нашу плату, отсоедините линию VIN от линии электропередач. Вы подключите ее позже обратно.

Присоедините свой Arduino к компьютеру и откройте Arduino IDE. Убедитесь, что у вас правильный номер платы и порта, выбранный в меню «Сервис»> «Сервис и инструменты»> «Порт».

Мы будем использовать библиотеку FastLED для тестирования нашей установки. Вы можете добавить библиотеку, нажав на Эскиз> Включить библиотеку> Управление библиотеками и поиск FastLED. Нажмите «Установить», и библиотека будет добавлена в среду IDE.

В разделе «Файл»> «Примеры»> «FastLED» выберите эскиз DemoReel100. В этом эскизе задействованы различные эффекты, которые можно сделать с помощью светодиодных полос WS2812, и невероятно легко настроить.

Все, что вам нужно изменить, — это переменная DATA_PIN, чтобы она соответствовала значку 13 и переменной NUM_LEDS для определения количества светодиодов, находящихся в полосе, которую вы используете. В этом случае я применяю только небольшую линию из 10 светодиодов, вырезанных из более длинной полосы.

Используйте большее количество для красивейшего светового шоу!

Загрузите эскиз на свою плату, отсоедините USB-кабель и включите источник питания 5 В.

Наконец, подключите VIN Arduino к линии электропередач и наслаждайтесь представлением.

Светодиодная лента Ардуино – Безграничные возможности

Демо-эскиз демонстрирует некоторые из многих возможных комбинаций эффектов, которые могут быть достигнуты с помощью светодиодных лент. Наряду с тем, что они являются украшением интерьера, их также можно использовать для практических целей. Хорошим проектом будет создание вашей собственной атмосферы для медиацентра или рабочего места.
Хотя эти полосы определенно функциональнее, чем SMD5050, пока не списывайте со счетов стандартные 12-вольтовые светодиодные полосы. Они являются непревзойденными с точки зрения цены. Плюсом будет то, что существует огромное количество приложений для светодиодных лент.

Учиться работать со светодиодными лентами — хороший способ познакомиться с базовым программированием на Arduino, но лучший способ учиться — изменять коды. Побалуйтесь с приведенным выше кодом и посмотрите, что вы можете сделать! Если все это слишком сложно для вас, подумайте о проектах Arduino для начинающих.

Адресная лента ws2813

Поэтому прогресс не стоял на месте и позже были разработаны более совершенные ленты – ws2813 (5V), ws2815 (12V).

У таких лент добавлена четвертая дублирующая дорожка. По ней передаются данные, если какой-то из диодов сгорел и вышел из строя.

Как это работает? Сигнал в нормальном состоянии поступает на Data Input (DIN) и выходит с чипа на Data Out (DO). По такой цепочке данные проходят по всей ленте.

Когда первый чип выходит из строя и данные перестают выходить с DO, благодаря дублирующей дорожке сигнал продолжает поступать на разъем BIN.

Второй чип анализирует пропажу сигнала на DIN, но
видит его наличие на BIN и продолжает
работать как ни в чем не бывало.

Самое главное, чтобы при выходе из строя первого диода не
произошло замыкания между VDD и GND.

Ошибка №1
Никогда не используйте подсветку на чипах типа WS2812b при съемке видео.

Если захотите снимать кино или видеоклип с такой
подсветкой, то применяйте только ленту WS2813, не
меньше.

Дело здесь в частоте регенерации. У старых моделей она
всего 400Гц.

Для человеческого глаза это может быть и незаметно, а вот камера вам такой ошибки не простит.

Вот очень наглядный эксперимент с такими светодиодами в динамике. Подключите отрезок ленты с двумя разными чипами и попробуйте помахать ими из стороны в сторону.

Результат на пойманом стопкадре.

Надо заметить, что это всего лишь один подключенный светодиод 2812b и 2813, а не несколько их штук в одном ряду.

Прозвонка отдельного светодиода в ленте

Даже перегорание одного светодиода может вызвать неработоспособность целого участка ленты, либо всей подсветки.

Например, такое часто происходит в светодиодных гирляндах.

В ней все светодиоды подключены последовательно, и замыкание одной лампочки приводит к поломке всего изделия, либо отдельной ветви.

Проверяются светодиоды мультиметром, в режиме ”проверка диодов”. Ищите на корпусе специальный значок.

Если соблюдая полярность, щупами мультиметра коснуться контактных ножек, рабочий светодиод должен слегка подсветиться.

проверка светодиода мультиметром
проверка светодиода мультиметром

Даже если свечения не видно, можно проверить исправность элемента по показаниям на табло. На нем должна отобразиться цифра фиксирующая величину падения напряжения.

При этом вам вовсе не обязательно знать справочные данные ленты. Просто запоминаете цифры и проделайте такие же измерения на соседних светодиодах.

А можно ли проверить SMD диод на герметичных лентах с силиконовой защитой IP65, при этом не снимая слоя изоляции? Да, можно. Для этого несколько модернизируйте измерительные щупы, применив обыкновенные иголки.

Как это сделать, говорится в статье про ремонт гирлянды.

Кстати пробой, чаще всего происходит из-за перегрева. Причины его разные:

монтаж светодиодных лент мощность более 10Вт на метр без алюминиевого профиля

чересчур плотный монтаж, когда отдельные участки подсветки располагаются близко друг к другу

монтаж в местах с повышенной температурой (возле нагревательных приборов или непосредственно над кухонной плитой)

Если же вы перепутаете и подключите щупы с обратной полярностью, то экран мультиметра должен показать ”бесконечность” или единицу ”1” в левом углу табло.

Когда при обратной полярности появляется не “единица”, а какие-то другие цифры – это также свидетельствует о наличии неисправности. Такой светодиод необходимо менять.

Помните, чтобы убедиться в работоспособности светодиодов на ленте, проверять их нужно в обе стороны!

Когда нашли неисправный элемент, заменить его для непрофессионала будет делом не простым. Но можно поступить иначе.

Просто вырезаете с двух сторон неисправный участок светодиодной ленты в специальных местах для реза.

И вместо него, через коннекторы или пайку, подсоединяете другой такой же. 

Какие ошибки могут быть при выборе?

Подводя итог всему вышесказанному, перечислим три основные ошибки, которых вам следует избегать при выборе и покупке контроллера.

1 Выбор без расчета мощности.

2 Монтаж контроллеров, работающих от инфракрасных пультов ДУ за потолком или зашивание их гипсокартоном.

3 Использование контроллера одного производителя для подсветки в разных комнатах.

Почему это
ошибка и чем это грозит? Проблема здесь в том, что у продукции одного и того же
производителя, пульты могут работать на одной частоте.

И вы, пытаясь включить RGB подсветку только в зале, автоматически будете ее запускать во всех остальных комнатах и остальных местах.

Чтобы этого избежать, либо используйте псевдо систему “Умный дом”, с одним пультом, управляющим на четырех разных каналах.

Либо элементарно для разных комнат, покупайте продукцию разных фирм.

Технические характеристики

Адресные линейные светильники представляют собой усложненный вариант RGB матрицы, собранный на базе светодиодов в SMD корпусе типоразмера 5050. В каждом корпусе имеется микрочип ШИМ драйвера, позволяющий управлять режимом работы именно светодиода. Параметры светильника:

  • ток
    потребления интегральной микросхемы ШИМ составляет 1 мкА;
  • сам светодиод потребляет 20 мА, а весь
    пиксель — 60 мА;
  • диапазон температур, при которых прибор может
    работать без сбоев — от – 25° до +80°;
  • степень защиты IP30, IP65 или IP67.

Степень защиты — это важный параметр. Он определяет способность светильника противостоять внешним воздействиям, как температурным, так и механическим. Если изделие планируется использовать в условиях улицы, необходимо выбирать экземпляры с уровнем защиты не менее IP65 или IP67.

Маркировка

Светодиодная лента имеет маркировку, содержащую полную информацию о параметрах и даже косвенно о производителе данного светильника. О том, что конструкция программируемая, с адресным управлением посредством микрокомпьютера (контроллера), указывают три первые буквы SPI. Помимо этого, маркировка содержит массу другой информации:

  • серия;
  • номер завода, на котором произведены светодиоды;
  • длина (в миллиметрах);
  • тип герметизации (P — прямоугольная трубка из
    силикона, SE —
    сверху имеется заливка силиконовым герметизирующим составом, PGS — сплошная заливка герметиком в
    силиконовой трубке);
  • напряжение питания;
  • плотность элементов на ленте (2Х — двойная
    плотность, 2Х2 — двойная плотность в два ряда);
  • цвет
    свечения ленты;
  • тип корпуса светодиодов;
  • общее количество светодиодов на данной ленте;
  • тип основания (W — белое, Y — желтое, B — черное, LUX — белая основа высшего
    качества).

Управление RGB лентой с помощью Andurino

Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого  цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.

Схема подключения к Arduino RGB светодиода:

Аналогично построено и управление RGB лентой Arduino:

Аrduino RGB контроллер лучше собирать на полевых транзисторах.

Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.

Скетч управления яркостью светодиодной ленты Arduino

int led = 120; устанавливаем средний уровень яркости

void setup() { pinMode(4, OUTPUT);  устанавливаем 4й аналоговый порт на вывод pinMode(2, INPUT);

pinMode(4, INPUT);  устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок } void loop(){

button1 = digitalRead(2);

button2 = digitalRead(4); if (button1 == HIGH)  нажатие на первую кнопку увеличит яркость { led = led + 5;

analogWrite(4, led); } if (button2 == HIGH)  нажатие на вторую кнопку уменьшит яркость { led = led — 5;

analogWrite(4, led); }

При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.

Основные выводы

Адресные светодиодные конструкции довольно сложны в настройке и написании соответствующего управляющего кода. Это ограничивает их распространение и делает устройства доступными только для людей, имеющих некоторую подготовку. При этом, возможности таких светодиодов намного выше, а декоративный эффект безусловно лидирует среди всех остальных типов и вариантов светодиодной подсветки.

В своих комментариях наши читатели могут изложить собственные варианты подключения или настройки адресных светодиодов, дать полезные советы начинающим или даже опытным пользователям. Это будет очень полезно и сможет расширить число почитателей адресных светодиодов. 

Предыдущая
СветодиодыОсновные причины, почему гудит светодиодная лампа
Следующая
СветодиодыЧто такое и где применяется RGB-подсветка

Заключение

Лента основана на светодиодах WS2812B в корпусе LED 5050, куда в корпус производители поместили не только три встроенных светодиода (Красный, Зеленый, Синий), но и управляемый ШИМ драйвер, управляющий их яркостью. Благодаря этому мы можем получить произвольный цвет, изменяя яркость встроенных светодиодов, а так же управлять отдельно взятым пикселем на ленте. Собственно, три встроенных разноцветных светодиода вместе с ШИМ драйвером и образуют светодиод WS2812B.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.arduino.on.kg

www.ledjournal.info

www.electrik.info

www.vyrashhivanie-iz-semyan.ru

Предыдущая
ПолупроводникиКак устроены многоцветные светодиоды
Следующая
ПолупроводникиЧто такое NTC термисторы

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий